04 Fakultät Energie-, Verfahrens- und Biotechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5
Browse
4 results
Search Results
Item Open Access Global potentials and costs of synfuels via Fischer-Tropsch process(2023) Buchenberg, Patrick; Addanki, Thushara; Franzmann, David; Winkler, Christoph; Lippkau, Felix; Hamacher, Thomas; Kuhn, Philipp; Heinrichs, Heidi; Blesl, MarkusThis paper presents the potentials and costs of synthetic fuels (synfuels) produced by renewable energy via PEM water electrolysis and the subsequent Fischer-Tropsch process for the years 2020, 2030, 2040, and 2050 in selected countries across the globe. The renewable energy potential was determined by the open-source tool pyGRETA and includes photovoltaic, onshore wind, and biomass. Carbon dioxide is obtained from biomass and the atmosphere by direct air capture. The potentials and costs were determined by aggregating minimal cost energy systems for each location on a state level. Each linear energy system was modelled and optimised by the optimisation framework urbs. The analysis focused on decentralised and off-grid synthetic fuels’ production. The transportation costs were roughly estimated based on the distance to the nearest maritime port for export. The distribution infrastructure was not considered since the already-existing infrastructure for fossil fuels can be easily adopted. The results showed that large amounts of synthetic fuels are available for EUR 110/MWh (USD 203/bbl) mainly in Africa, Central and South America, as well as Australia for 2050. This corresponds to a cost reduction of more than half compared to EUR 250/MWh (USD 461/bbl) in 2020. The synfuels’ potentials follow the photovoltaic potentials because of the corresponding low levelised cost of electricity. Batteries are in particular used for photovoltaic-dominant locations, and transportation costs are low compared to production costs.Item Open Access Analysis and prediction of electromobility and energy supply by the example of Stuttgart(2021) Wörner, Ralf; Morozova, Inna; Cao, Danting; Schneider, Daniela; Neuburger, Martin; Mayer, Daniel; Körner, Christian; Kagerbauer, Martin; Kostorz, Nadine; Blesl, Markus; Jochem, Patrick; Märtz, AlexandraThis paper seeks to identify bottlenecks in the energy grid supply regarding different market penetration of battery electric vehicles in Stuttgart, Germany. First, medium-term forecasts of electric and hybrid vehicles and the corresponding charging infrastructure are issued from 2017 to 2030, resulting in a share of 27% electric vehicles by 2030 in the Stuttgart region. Next, interactions between electric vehicles and the local energy system in Stuttgart were examined, comparing different development scenarios in the mobility sector. Further, a travel demand model was used to generate charging profiles of electric vehicles under consideration of mobility patterns. The charging demand was combined with standard household load profiles and a load flow analysis of the peak hour was carried out for a quarter comprising 349 households. The simulation shows that a higher charging capacity can lead to a lower transformer utilization, as charging and household peak load may fall temporally apart. Finally, it was examined whether the existing infrastructure is suitable to meet future demand focusing on the transformer reserve capacity. Overall, the need for action is limited; only 10% of the approximately 560 sub-grids were identified as potential weak points.Item Open Access On the way to a sustainable European energy system : setting up an integrated assessment toolbox with TIMES PanEU as the key component(2020) Korkmaz, Pinar; Cunha Montenegro, Roland; Schmid, Dorothea; Blesl, Markus; Fahl, UlrichThe required decarbonization of the energy system is a complex task, with ambitious targets under the Paris Agreement, and related policy analysis should consider possible impacts on the economy and society. By coupling the energy system model TIMES PanEU with the impact assessment model EcoSense and the computable general equilibrium model NEWAGE, we present an integrated assessment toolbox for the European energy system capable of internalizing health damage costs of air pollution while simultaneously accounting for demand changes in energy services caused by economic feedback loops. The effects of each coupling step are investigated in a scenario analysis. Additionally, CO2 decomposition analysis is applied to identify the main drivers to decarbonize the energy system. Our results show that integrating externalities forces the system to take early action, which provides benefits on the societal level. Including macro-economic variables has a negative effect on energy service demands and generally reduces the need for structural change, which are still the main drivers of decarbonization. The tighter the models are coupled, the fewer the iterations needed and the lower the CO2 prices resulting from the carbon cap and trade system. In this aspect, an integrated view can provide valuable insights to determine efficient and effective decarbonization paths.Item Open Access How to reach the new Green Deal targets : analysing the necessary burden sharing within the EU using a multi-model approach(2021) Kattelmann, Felix; Siegle, Jonathan; Cunha Montenegro, Roland; Sehn, Vera; Blesl, Markus; Fahl, Ulrich