04 Fakultät Energie-, Verfahrens- und Biotechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5
Browse
9 results
Search Results
Item Open Access Degradation of 2-bromo-, 2-chloro- and 2-fluorobenzoate by Pseudomonas putida CLB 250(1989) Engesser, Karl-Heinrich; Schulte, P.Pseudomonas putida strain CLB 250 (DSM 5232) utilized 2-bromo-, 2-chloro- and 2-fluorobenzoate as sole source of carbon and energy. Degradation is suggested to be initiated by a dioxygenase liberating halide in the first catabolic step. After decarboxylation and rearomatization catechol is produced as a central metabolite which is degraded via the ortho-pathway. After inhibition of ring cleavage activities with 3-chlorocatechol, 2-chlorobenzoate was transformed to catechol in nearly stoichiometric amounts. Other ortho-substituted benzoates like anthranilate and 2-methoxybenzoate seem to be metabolized via the same route.Item Open Access Enrichment of dibenzofuran utilizing bacteria with high co-metabolic potential towards dibenzodioxin and other anellated aromatics(1989) Strubel, Volker; Rast, Hans G.; Fietz, Walter H.; Knackmuss, Hans-Joachim; Engesser, Karl-HeinrichDibenzofuran degrading bacteria were enriched from various environmental sources. A mutualistic mixed culture of strain DPO 220 and strain DPO 230 was characterized. Strain DPO 220 alone showed limited growth with dibenzofuran as sole source of carbon and energy (td ≥ 4.5 h). A labile degradation product, C12H10O5, and salicylate were isolated from the culture fluid. Salicylate was found to be a central intermediate of DBF-degradation.Strain DPO 220 co-metabolized a wide range of anellated aromatics as well as heteroaromatics. High rates of co-oxidation of dibenzodioxin demonstrate analogue-enrichment to be a powerful technique for selecting enzymatic activities for otherwise non-degradable substrates.Item Open Access (+)-4-Carboxymethyl-2,4-dimethylbut-2-en-4-olide as dead-end metabolite of 2,4-dimethylphenoxyacetic acid or 2,4-dimethylphenol by alcaligenes eutrophus JMP 134(1990) Pieper, Dietmar H.; Engesser, Karl-Heinrich; Knackmuss, Hans-Joachim2,4-Dimethylphenoxyacetic acid and 2,4-dimethylphenol are not growth substrates for Alcaligenes eutrophus JMP 134 although being cooxidized by 2,4-dichlorophenoxyacetate grown cells. None of the relevant catabolic pathways were induced by the dimethylphenoxyacetate, 3,5-Dimethylcatechol is not subject to metacleavage. The alternative ortho-eleavage is also unproductive and gives rise to (+)-4-carboxymethyl-2,4-dimethylbut-2-en-4-olide as a dead-end metabolite. High yields of this metabolite were obtained with the mutant Alcaligenes eutrophys JMP 134-1 which constitutively expresses the genes of 2,4-dichlorophenoxyacetic acid metabolism.Item Open Access Dioxygenolytic cleavage of aryl ether bonds: 1,2-Dihydro-1,2-dihydroxy-4-carboxybenzophenone as evidence for initial 1,2-dioxygenation in 3- and 4-carboxy biphenyl ether degradation(1990) Engesser, Karl-Heinrich; Fietz, Walter H.; Fischer, Peter; Schulte, P.; Knackmuss, Hans-JoachimA bacterial strain, Pseudomonas sp. POB 310, was enriched with 4-carboxy biphenyl ether as sole source of carbon and energy. Resting cells of POB 310 co-oxidize a substrate analogue, 4-carboxybenzophenone, yielding 1,2-dihydro-1,2-dihydroxy-4-carboxy-benzophenone. The ether bond of 3- and 4-carboxy biphenyl ether is cleaved analogously by initial 1,2-dioxygenation, yielding a hemiacetal which is hydrolysed to proto-catechuate and phenol. These intermediates are degraded via an ortho and meta pathway, respectively. Alternative 2,3- and 3,4-dioxygenation can be ruled out as triggering steps in carboxy biphenyl ether degradation.Item Open Access Bacterial metabolism of side-chain-fluorinated aromatics: unproductive meta-cleavage of 3-trifluoromethylcatechol(1990) Engesser, Karl-Heinrich; Rubio, Miguel Angel; Knackmuss, Hans-JoachimSixteen bacterial strains capable of degrading alkylbenzenes and alkylphenols were directly isolated from soil and water. The degradation pathways are discussed. Alkylcatechols are almost exclusively cleaved via meta-ring fission. Meta-cleavage of 3-trifluoromethyl-(TFM)-catechol was observed with all strains at different rates although the reaction rates compared to catechol as a substrate varied considerably. All 2-hydroxy-6-oxohepta-2,4-dienoic acid hydrolases investigated showed strong binding of 7,7,7-trifluoro-2-hydroxy-6-oxohepta-2,4-dienoic acid, the ring fission product of 3-TFM-catechol. Turnover rates, however, were negligible indicating this compound to be a general dead-end metabolite during metabolism of TFM-substituted compounds via meta-cleavage pathways.Item Open Access Styrene and bioaerosol removal from waste air with a combined biotrickling filter and DBD-plasma system(2020) Helbich, Steffen; Dobslaw, Daniel; Schulz, Andreas; Engesser, Karl-HeinrichA combined system of a biotrickling filter and a non-thermal plasma (NTP) in a downstream airflow was operated for 1220 days for treatment of emissions of styrene and secondary emissions of germs formed in the biological process. The biotrickling filter was operated at variable inlet concentrations, empty bed residence times (EBRT), type and dosage of fertilizers, irrigation densities, and starvation periods, while dielectric barrier discharge and corona discharge were operated at different specific input energy levels to achieve optimal conditions. Under these conditions, efficiencies in the removal of volatile organic compounds (VOCs), germs and styrene of 96-98%, 1-4 log units and 24.7-50.1 g C m-3 h-1 were achieved, respectively. Fluid simulations of the NTP and a germ emission-based clocking of the discharge reveal further energy saving potentials of more than 90%. The aim of an energy-efficient elimination of VOCs through a biotrickling filter and of secondary germ emissions by a NTP stage in a downstream airflow for potential re-use of purified waste gas as process gas for industrial application was successfully accomplished.Item Open Access Degradation of fluorene by Brevibacterium sp. strain DPO 1361: a novel C-C bond cleavage mechanism via 1,10-dihydro-1,10-dihydroxyfluoren-9-one(1994) Trenz, Stefan Peter; Engesser, Karl-Heinrich; Fischer, Peter; Knackmuss, Hans-JoachimAngular dioxygenation has been established as the crucial step in dibenzofuran degradation by Brevibacterium sp. strain DPO 1361 (V. Strubel, K. H. Engesser, P. Fischer, and H.-J. Knackmuss, J. Bacteriol. 173:1932-1937, 1991). The same strain utilizes biphenyl and fluorene as sole sources of carbon and energy. The fluorene degradation sequence is proposed to be initiated by oxidation of the fluorene methylene group to 9-fluorenol. Cells grown on fluorene exhibit pronounced 9-fluorenol dehydrogenase activity. Angular dioxygenation of the 9-fluorenone thus formed yields 1,10-dihydro-1,10-dihydroxyfluoren-9-one (DDF). A mechanistic model is presented for the subsequent C-C bond cleavage by an NAD(+)-dependent DDF dehydrogenase, acting on the angular dihydrodiol. This enzyme was purified and characterized as a tetramer of four identical 40-kDa subunits. The following Km values were determined: 13 microM for DDF and 65 microM for 2,3-dihydro-2,3-dihydroxybiphenyl. The enzyme also catalyzes the production of 3-(2'-carboxyphenyl)catechol, which was isolated, and structurally characterized, in the form of the corresponding lactone, 4-hydroxydibenzo-(b,d)-pyran-6-one. Stoichiometry analysis unequivocally demonstrates that angular dioxygenation constitutes the principal pathway in Brevibacterium sp. strain DPO 1361.Item Open Access Microbial metabolism of chlorosalicylates: accelerated evolution by natural genetic exchange(1986) Rubio, Miguel Angel; Engesser, Karl-Heinrich; Knackmuss, Hans-JoachimMethylsalicylate-grown cells of Pseudomonas sp. WR 401 cometabolized 3-, 4- and 5-substituted halosalicylates to the corresponding halocatechols. Further degradation was unproductive due to the presence of high levels of catechol 2,3-dioxygenase. This strain acquired the ability to utilize 3-chlorobenzoate following acquisition of genes from Pseudomonas sp. B 13 which are necessary for the assimilation of chlorocatechols. This derivative (WR 4011) was unable to use 4- or 5-chlorosalicylates. Derivatives able to use these compounds were obtained by plating WR 4011 on 5-chlorosalicylate minimal medium; one such derivative was designated WR 4016. The acquisition of this property was accompanied by concomitant loss of the methylsalicylate phenotype. During growth on 4- or 5-chlorosalicylate the typical enzymes of chlorocatechol assimilation were detected in cell free extracts, whereas catechol 2,3-dioxygenase activity was not induced. Repeated subcultivation of WR 4016 in the presence of 3-chlorosalicylate produced variants (WR 4016-1) which grew on all three isomers.Item Open Access Regulation of catabolic pathways of phenoxyacetic acids and phenols in Alcaligenes eutrophus JMP 134(1989) Pieper, Dietmar H.; Engesser, Karl-Heinrich; Knackmuss, Hans-JoachimAlicaligenes eutrophus JMP 134 is able to grow on 2,4-dichloro-, 4-chloro-2-methyl- and 2-methylphenoxy acetic acid. The unsubstituted phenoxyacetic acid, however, is no growth substrate due to very poor induction of the 2,4-D monooxygenase. Spontaneous mutants of Alcaligenes eutrophus JMP 134 capable of growth with phenoxyacetic acid were selected on agar plates. One of these mutants, designated Alcaligenes eutrophus JMP 134-1, shows constitutive production of six enzymes of the 2,4-D pathway, which were known to be localized in at least three different transcriptional units. A common regulatory gene is postulated to be mutated. 2,4-Dichloro-, 4-chloro-2-methyl- and 2-methylphenoxyacetic acid were the inducers of the enzymes of the ldquochloroaromatic pathwayrdquo in Alcaligenes eutrophus JMP 134. Phenol and 2-methylphenol, metabolites of the degradation of phenoxyacetic acid and 2-methylphenoxyacetic acid, were shown to be inducers of the meta-cleavage pathway, whereas 2,4-dichlorophenol and 4-chloro-2-methylphenol were not. Thus efficient regulation prevents chloroaromatics from being misrouted into the unproductive meta-cleavage pathway. Because 2,4-dichloro-and 4-chloro-2-methylphenol did not show any induction potential, they were growth substrates only for the mutant strain JMP 134-1.