04 Fakultät Energie-, Verfahrens- und Biotechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5
Browse
72 results
Search Results
Item Open Access Constitutive correlations for mass transport in fibrous media based on asymptotic homogenization(2023) Maier, Lukas; Kufferath-Sieberin, Lars; Pauly, Leon; Hopp-Hirschler, Manuel; Gresser, Götz T.; Nieken, UlrichMass transport in textiles is crucial. Knowledge of effective mass transport properties of textiles can be used to improve processes and applications where textiles are used. Mass transfer in knitted and woven fabrics strongly depends on the yarn used. In particular, the permeability and effective diffusion coefficient of yarns are of interest. Correlations are often used to estimate the mass transfer properties of yarns. These correlations commonly assume an ordered distribution, but here we demonstrate that an ordered distribution leads to an overestimation of mass transfer properties. We therefore address the impact of random ordering on the effective diffusivity and permeability of yarns and show that it is important to account for the random arrangement of fibers in order to predict mass transfer. To do this, Representative Volume Elements are randomly generated to represent the structure of yarns made from continuous filaments of synthetic materials. Furthermore, parallel, randomly arranged fibers with a circular cross-section are assumed. By solving the so-called cell problems on the Representative Volume Elements, transport coefficients can be calculated for given porosities. These transport coefficients, which are based on a digital reconstruction of the yarn and asymptotic homogenization, are then used to derive an improved correlation for the effective diffusivity and permeability as a function of porosity and fiber diameter. At porosities below 0.7, the predicted transport is significantly lower under the assumption of random ordering. The approach is not limited to circular fibers and may be extended to arbitrary fiber geometries.Item Open Access Acid catalyzed cross‐linking of polyvinyl alcohol for humidifier membranes(2021) Michele, Andre; Paschkowski, Patrick; Hänel, Christopher; Tovar, Günter E. M.; Schiestel, Thomas; Southan, AlexanderPolyvinyl alcohol (PVA) is a hydrophilic polymer well known for good film forming properties, high water vapor permeance JW, and low nitrogen permeance. However, depending on molar mass and temperature, PVA swells strongly in water until complete dissolution. This behavior affects the usability of PVA in aqueous environments and makes cross‐linking necessary if higher structural integrity is envisaged. In this work, PVA networks are formed by thermal cross‐linking in the presence of p‐toluenesulfonic acid (TSA) and investigated in a design of experiments approach. Experimental parameters are the cross‐linking period tc, temperature ϑ and the TSA mass fraction wTSA. Cross‐linking is found to proceed via ether bond formation at all reaction conditions. Degradation is promoted especially by a combination of high wTSA, tc and ϑ. Thermal stability of the networks after preparation is strongly improved by neutralizing residual TSA. Humidification membranes with a JW of 6423 ± 63.0 gas permeation units (GPU) are fabricated by coating PVA on polyvinyliden fluoride hollow fibers and cross‐linking with TSA. Summarizing, the present study contributes to a clearer insight into the cross‐linking of PVA in presence of TSA, the thermal stability of the resulting networks and the applicability as selective membrane layers for water vapor transfer.Item Open Access Unravelling parameter interactions in calcium alginate/polyacrylamide double network hydrogels using a design of experiments approach for the optimization of mechanical properties(2024) Gorke, Oliver; Stuhlmüller, Marc; Tovar, Günter E. M.; Southan, AlexanderCalcium alginate/polyacrylamide double network hydrogels were reported to be exceptionally tough. However, literature reports so far varied the sample compositions mainly by one parameter at a time approaches, thus only drawing an incomplete picture of achievable material properties. In this contribution, sample compositions are varied according to a face-centered central composite experimental design taking into account the four parameters of alginate concentration cAlg, high/low molar mass alginate mixing ratio RP, acrylamide concentration cAAm, and N,N′-methylenebisacrylamide concentration cMBA. Each sample composition is investigated in triplicate. Thus, 75 samples were investigated by tensile testing, and a detailed analysis of the significant parameters and parameter interactions influencing the mechanical properties is conducted. The data shows that two parameter interactions, involving all four tested parameters, have a large effect on the Young's modulus, the strength, the toughness and the strain at material failure. As a consequence, it becomes evident that the experimental procedure from previous studies did not always result in optimum sample compositions. The results allow optimization of the mechanical properties within the studied parameter space, and a new maximum value of the strength of 710 kPa is reported. The data also give rise to the assumption that other parameters and parameter interactions ignored also in this study may allow further tailoring of mechanical properties.Item Open Access Optimizing mass transfer in multiphase fermentation : the role of drag models and physical conditions(2023) Mast, Yannic; Wild, Moritz; Takors, RalfDetailed knowledge of the flow characteristics, bubble movement, and mass transfer is a prerequisite for the proper design of multiphase bioreactors. Often, mechanistic spatiotemporal models and computational fluid dynamics, which intrinsically require computationally demanding analysis of local interfacial forces, are applied. Typically, such approaches use volumetric mass-transfer coefficient (kLa) models, which have demonstrated their predictive power in water systems. However, are the related results transferrable to multiphase fermentations with different physicochemical properties? This is crucial for the proper design of biotechnological processes. Accordingly, this study investigated a given set of mass transfer data to characterize the fermentation conditions. To prevent time-consuming simulations, computational efforts were reduced using a force balance stationary 0-dimension model. Therefore, a competing set of drag models covering different mechanistic assumptions could be evaluated. The simplified approach of disregarding fluid movement provided reliable results and outlined the need to identify the liquid diffusion coefficients in fermentation media. To predict the rising bubble velocities uB, the models considering the Morton number (Mo) showed superiority. The mass transfer coefficient kL was best described using the well-known Higbie approach. Taken together, the gas hold-up, specific surface area, and integral mass transfer could be accurately predicted.Item Open Access Numerical methods for the simulation of chemical engineering processes(1994) Dieterich, Erwin; Sorescu, Gheorge; Eigenberger, GerhartFundamental aspects and the current state of the art in simulating the dynamic and steady-state behavior of chemical engineering processes are discussed. The discretization of the spatial derivatives in the equations of change leads to a system of differential algebraic equations (DAE), consisting of ordinary differential equations in the time domain, and algebraic equations. The present paper discusses the necessary steps to solve the DAE, and mentions proven standard software for these steps as well as for the solution of the differential algebraic equations as a whole.Item Open Access Parametric study on the adjustability of the syngas composition by sorption-enhanced gasification in a dual-fluidized bed pilot plant(2021) Hafner, Selina; Schmid, Max; Scheffknecht, GünterFinding a way for mitigating climate change is one of the main challenges of our generation. Sorption-enhanced gasification (SEG) is a process by which syngas as an important intermediate for the synthesis of e.g., dimethyl ether (DME), bio-synthetic natural gas (SNG) and Fischer-Tropsch (FT) products or hydrogen can be produced by using biomass as feedstock. It can, therefore, contribute to a replacement for fossil fuels to reduce greenhouse gas (GHG) emissions. SEG is an indirect gasification process that is operated in a dual-fluidized bed (DFB) reactor. By the use of a CO2-active sorbent as bed material, CO2 that is produced during gasification is directly captured. The resulting enhancement of the water-gas shift reaction enables the production of a syngas with high hydrogen content and adjustable H2/CO/CO2-ratio. Tests were conducted in a 200 kW DFB pilot-scale facility under industrially relevant conditions to analyze the influence of gasification temperature, steam to carbon (S/C) ratio and weight hourly space velocity (WHSV) on the syngas production, using wood pellets as feedstock and limestone as bed material. Results revealed a strong dependency of the syngas composition on the gasification temperature in terms of permanent gases, light hydrocarbons and tars. Also, S/C ratio and WHSV are parameters that can contribute to adjusting the syngas properties in such a way that it is optimized for a specific downstream synthesis process.Item Open Access Problems of mathematical modelling of industrial fixed-bed reactors(1986) Eigenberger, Gerhart; Ruppel, WilhelmModelling and computer simulation for the purpose of design and operation of industrial fixed-bed reactors are discussed with the aid of examples. Emphasis is laid upon difficulties and problems arising from aiming at an adequate model formulation. The following aspects are discussed in some detail: 1) The influence of heat and mass transport in the catalyst pellet, especially with complex reactions. 2) Relationships between radial heat transfer and radial flow profile and its influence upon the temperature profile in packed tubes with or without heat generation by reaction. 3) Problems of adequate modelling of catalyst activity changes during the course of operation. 4) Scale-up problem of multitubular fixed-bed reactors, i.e. the problem of achieving and maintaining the same operating conditions in and around all the tubes of the bundle.Item Open Access Novel anion exchange membrane based on poly(pentafluorostyrene) substituted with mercaptotetrazole pendant groups and its blend with polybenzimidazole for vanadium redox flow battery applications(2020) Cho, Hyeongrae; Atanasov, Vladimir; Krieg, Henning M.; Kerres, Jochen A.In order to evaluate the performance of the anion exchange membranes in a vanadium redox flow battery, a novel anion exchange polymer was synthesized via a three step process. Firstly, 1-(2-dimethylaminoethyl)-5-mercaptotetrazole was grafted onto poly(pentafluorostyrene) by nucleophilic F/S exchange. Secondly, the tertiary amino groups were quaternized by using iodomethane to provide anion exchange sites. Finally, the synthesized polymer was blended with polybenzimidazole to be applied in vanadium redox flow battery. The blend membranes exhibited better single cell battery performance in terms of efficiencies, open circuit voltage test and charge-discharge cycling test than that of a Nafion 212 membrane. The battery performance results of synthesized blend membranes suggest that those novel anion exchange membranes are promising candidates for vanadium redox flow batteries.Item Open Access Temperature reduction as operando performance recovery procedure for polymer electrolyte membrane fuel cells(2024) Zhang, Qian; Schulze, Mathias; Gazdzicki, Pawel; Friedrich, Kaspar AndreasTo efficiently mitigate the reversible performance degradation of polymer electrolyte membrane fuel cells, it is crucial to thoroughly understand recovery effects. In this work, the effect of operando performance recovery by temperature reduction is evaluated. The results reveal that operando reduction in cell temperature from 80 °C to 45 °C yields a performance recovery of 60-70% in the current density range below 1 A cm-2 in a shorter time (1.5 h versus 10.5 h), as opposed to a known and more complex non-operando recovery procedure. Notably, the absolute recovered voltage is directly proportional to the total amount of liquid water produced during the temperature reduction. Thus, the recovery effect is likely attributed to a reorganization/rearrangement of the ionomer due to water condensation. Reduction in the charge transfer and mass transfer resistance is observed after the temperature reduction by electrochemical impedance spectroscopy (EIS) measurement. During non-operando temperature reduction (i.e., open circuit voltage (OCV) hold during recovery instead of load cycling) an even higher recovery efficiency of >80% was achieved.Item Open Access Degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with regenerated cellulose fibers(2024) Seitz, Michael; Rihm, Rainer; Bonten, ChristianPHBV is a promising plastic for replacing conventional petroleum-based plastics in the future. However, the mechanical properties of PHBV are too low for use in high-stress applications and the degradation of the polymer limits possible applications. In this work, the mechanical properties were, therefore, increased using bio-based regenerated cellulose fibers and degradation processes of the PHBV-RCF composites were detected in accelerated aging tests under various environmental conditions. Mechanical, optical, rheological and thermal analysis methods were used for this characterization. The fibers significantly increased the mechanical properties, in particular the impact strength. Different degradation mechanisms were identified. UV radiation caused the test specimens to fade significantly, but no reduction in mechanical properties was observed. After storage in water and in aqueous solutions, the mechanical properties of the compounds were significantly reduced. The reason for this was assumed to be hydrolytic degradation catalyzed by higher temperatures. The hydrolytic degradation of PHBV was mainly caused by erosion from the test specimen surface. By exposing the regenerated cellulose fibers, this effect could now also be visually verified. For the use of regenerated cellulose fiber-reinforced PHBV in more durable applications, the aging mechanisms that occur must be prevented in the future through the use of stabilizers.