04 Fakultät Energie-, Verfahrens- und Biotechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5
Browse
27 results
Search Results
Item Open Access Enhanced processing of regrind as recycling material in single-screw extruders(2021) Thieleke, Philipp; Bonten, ChristianRegrind processing poses challenges for single-screw extruders due to the irregularly shaped particles. For grooved feed zones, the output is lessened by the reduction of bulk density in comparison to virgin material. Simultaneously, the melt temperature increases, reducing the extruder’s process window. Through experimental investigations on a test stand, a novel feed zone geometry (nominal diameter 35 mm) is developed. It aligns the regrind’s specific throughput with that of virgin material. The regrind processing window is essentially increased. As the solids conveying in the novel feed zone cannot be simulated with existing methods, numerical simulations using the discrete element method are performed. Since plastic deformation occurs in the novel feed zone geometry, a new hysteresis contact model is developed. In addition to spheres, the regrind and virgin particles are modeled as superquadrics to better approximate the irregular shape. The new contact model’s simulation results show excellent agreement with experimental compression tests. The throughput of the extruder simulations is considerably underestimated when using spheres to represent the real particles than when using irregularly shaped superquadrics. Corresponding advantages can be seen especially for virgin material.Item Open Access Miscibility and phase separation in PMMA/SAN blends investigated by nanoscale AFM-IR(2021) Resch, Julia; Dreier, Julia; Bonten, Christian; Kreutzbruck, MarcItem Open Access Prediction of the bubble growth behavior by means of the time-, temperature-, pressure- and blowing agent concentration-dependent transient elongational viscosity function of polymers(2024) Schaible, Tobias; Bonten, ChristianBubble growth processes are highly complex processes, which are not only dependent on the foaming process parameters (temperature, pressure and blowing agent concentration) but also on the type and structure of the polymer used. Since the elongational viscosity at the bubble wall during bubble growth also depends on these influencing factors, the so-called transient elongational viscosity plays a key role in describing the gas bubble growth behavior in polymer melts. The model-based description of the transient elongational viscosity function is difficult due to its dependence on time, Hencky strain and strain rate. Therefore, representative viscosities or shear viscosity models are usually used in the literature to predict the bubble growth behavior. In this work, the transient equibiaxial elongational viscosity function at the bubble wall during bubble growth is described holistically for the first time. This is achieved by extending the so-called molecular stress function (MSF) model by superposition principles (temperature, pressure and blowing agent concentration) and by using the elongational deformation behavior (Hencky strain and strain rate) at the bubble wall during the initial, and thus viscosity-driven, bubble growth process. Therefore, transient uniaxial elongational viscosity measurements are performed and the non-linear MSF model parameters of the two investigated polymers PS (linear polymer chains) and PLA (long-chain branched polymer chains) are determined. By applying the superposition principles and by changing the strain mode parameter to the equibiaxial case in the MSF model, the transient equibiaxial viscosity master curve is obtained and used to describe the bubble growth process. The results show that the extended MSF model can fully predict the transient equibiaxial elongational viscosity function at the bubble wall during bubble growth processes. The bubble growth behavior over time can then be realistically described using the defined transient equibiaxial elongational viscosity function at the bubble wall. This is not possible, for example, with a representative viscosity and therefore clearly demonstrates the influence and importance of knowing the transient deformation behavior that prevails at the bubble wall during bubble growth processes.Item Open Access Deformation behavior investigation of auxetic structure made of poly(butylene adipate-co-terephthalate) biopolymers using finite element method(2023) Schneider, Yanling; Guski, Vinzenz; Schmauder, Siegfried; Kadkhodapour, Javad; Hufert, Jonas; Grebhardt, Axel; Bonten, ChristianAuxetic structures made of biodegradable polymers are favorable for industrial and daily life applications. In this work, poly(butylene adipate-co-terephthalate) (PBAT) is chosen for the study of the deformation behavior of an inverse-honeycomb auxetic structure manufactured using the fused filament fabrication. The study focus is on auxetic behavior. One characteristic of polymer deformation prediction using finite element (FE) simulation is that no sounded FE model exists, due to the significantly different behavior of polymers under loading. The deformation behavior prediction of auxetic structures made of polymers poses more challenges, due to the coupled influences of material and topology on the overall behavior. Our work presents a general process to simulate auxetic structural deformation behavior for various polymers, such as PBAT, PLA (polylactic acid), and their blends. The current report emphasizes the first one. Limited by the state of the art, there is no unified regulation for calculating the Poisson’s ratio n for auxetic structures. Here, three calculation ways of n are presented based on measured data, one of which is found to be suitable to present the auxetic structural behavior. Still, the influence of the auxetic structural topology on the calculated Poisson’s ratio value is also discussed, and a suggestion is presented. The numerically predicted force-displacement curve, Poisson’s ratio evolution, and the deformed auxetic structural status match the testing results very well. Furthermore, FE simulation results can easily illustrate the stress distribution both statistically and local-topology particularized, which is very helpful in analyzing in-depth the auxetic behavior.Item Open Access Degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with regenerated cellulose fibers(2024) Seitz, Michael; Rihm, Rainer; Bonten, ChristianPHBV is a promising plastic for replacing conventional petroleum-based plastics in the future. However, the mechanical properties of PHBV are too low for use in high-stress applications and the degradation of the polymer limits possible applications. In this work, the mechanical properties were, therefore, increased using bio-based regenerated cellulose fibers and degradation processes of the PHBV-RCF composites were detected in accelerated aging tests under various environmental conditions. Mechanical, optical, rheological and thermal analysis methods were used for this characterization. The fibers significantly increased the mechanical properties, in particular the impact strength. Different degradation mechanisms were identified. UV radiation caused the test specimens to fade significantly, but no reduction in mechanical properties was observed. After storage in water and in aqueous solutions, the mechanical properties of the compounds were significantly reduced. The reason for this was assumed to be hydrolytic degradation catalyzed by higher temperatures. The hydrolytic degradation of PHBV was mainly caused by erosion from the test specimen surface. By exposing the regenerated cellulose fibers, this effect could now also be visually verified. For the use of regenerated cellulose fiber-reinforced PHBV in more durable applications, the aging mechanisms that occur must be prevented in the future through the use of stabilizers.Item Open Access Mechanical properties of 3D-printed liquid crystalline polymers with low and high melting temperatures(2023) Johann, Kai S.; Wolf, Andreas; Bonten, ChristianAdditive manufacturing allows for the production of complex components using various types of materials such as plastics, metals and ceramics without the need for molding tools. In the field of high-performance polymers, semi-crystalline polymers such as polyetheretherketone (PEEK) or amorphous polymers such as polyetherimide (PEI) are already successfully applied. Contrary to semi-crystalline and amorphous polymers, thermotropic liquid crystalline polymers (LCPs) do not change into an isotropic liquid during melting. Instead, they possess anisotropic properties in their liquid phase. Within the scope of this work, this special group of polymers was investigated with regard to its suitability for processing by means of fused filament fabrication. Using an LCP with a low melting temperature of around 280 °C is compared to processing an LCP that exhibits a high melting temperature around 330 °C. In doing so, it was revealed that the achievable mechanical properties strongly depend on the process parameters such as the direction of deposition, printing temperature, printing speed and layer height. At a layer height of 0.10 mm, a Young’s modulus of 27.3 GPa was achieved. Moreover, by employing an annealing step after the printing process, the tensile strength could be increased up to 406 MPa at a layer height of 0.15 mm. Regarding the general suitability for FFF as well as the achieved uniaxial mechanical properties, the LCP with a low melting temperature was advantageous compared to the LCP with a high melting temperature.Item Open Access Investigation of auxetic structural deformation behavior of PBAT polymers using process and finite element simulation(2023) Schneider, Yanling; Guski, Vinzenz; Sahin, Ahmet O.; Schmauder, Siegfried; Kadkhodapour, Javad; Hufert, Jonas; Grebhardt, Axel; Bonten, ChristianThe current work investigates the auxetic tensile deformation behavior of the inversehoneycomb structure with 5 x 5 cells made of biodegradable poly(butylene adipate-coterephthalate) (PBAT). Fused deposition modeling, an additive manufacturing method, was used to produce such specimens. Residual stress (RS) and warpage, more or less, always exist in such specimens due to their layer-by-layer fabrication, i.e., repeated heating and cooling. The RS influences the auxetic deformation behavior, but its measurement is challenging due to its very fine structure. Instead, the finite-element (FE)-based process simulation realized using an ABAQUS plug-in numerically predicts the RS and warpage. The predicted warpage shows a negligibly slight deviation compared to the design topology. This process simulation also provides the temperature evolution of a small-volume material, revealing the effects of local cyclic heating and cooling. The achieved RS serves as the initial condition for the FE model used to investigate the auxetic tensile behavior. With the outcomes from FE calculation without consideration of the RS, the effect of the RS on the deformation behavior is discussed for the global force-displacement curve, the structural Poisson’s ratio evolution, the deformed structural status, the stress distribution, and the evolution, where the first three and the warpage are also compared with the experimental results. Furthermore, the FE simulation can easily provide the global stress-strain flow curve with the total stress calculated from the elemental stresses.Item Open Access Insights into the processing of recycled carbon fibers via injection molding compounding(2020) Wellekötter, Jochen; Resch, Julia; Baz, Stephan; Gresser, Götz Theo; Bonten, ChristianAlthough fiber-reinforced plastics combine high strength and stiffness with being lightweight, major difficulties arise with high volume production and the return of manufactured parts back into the cycle of materials at the end of their lifecycles. In a novel approach, structural parts were produced from recycled material while utilizing the so-called injection molding compounding process. Recycled fibers and recycled polyamide matrix material were used by blending carbon and matrix fibers into a sliver before processing. Injection molding was then used to produce long fiber-reinforced parts through a direct fiber feed system. Recycled matrix granules were incorporated into the injection molding process by means of an injection molding compounder to investigate their influences on the mechanical properties of the parts. The findings show that the recycled fibers and matrix perform well in standardized tests, although fiber length and fiber content vary significantly and remain below expectations.Item Open Access Comparative analysis of the solid conveying of regrind, virgin and powdery polyolefins in single-screw extrusion(2022) Johann, Kai S.; Reißing, Adrian; Bonten, ChristianThe shape and size of processed materials play a crucial role in the solid conveying characteristics of single-screw extruders. Thus, the increasing amount of plastic regrind leads to new challenges in screw extrusion. This work investigates the conveying behavior of three distinctly different material shapes in an axially as well as a helically grooved solid conveying zone. A uniform virgin polypropylene (PP) granule, an irregularly plate-shaped PP regrind and a powdery polyethylene (PE) are processed at screw speeds up to 1350 rpm. Thereby, frictionally engaged conveying in the grooves is visualized for the utilized powder. Similarly, the virgin granule is subject to forced conveying by interlocking in the grooves. The experimentally determined throughput is furthermore compared to analytical calculations which assume a so-called nut-screw conveying. It is found that these calculations perfectly predict the throughput when processing the virgin granule and the powder in a helically grooved barrel. In contrast, the analytical calculation significantly underestimates the throughput for the regrind. This underestimation is expected to be mainly caused by its plate shape and a difference in bulk density. The actual bulk density in the extruder is probably significantly higher due to both orientation and compaction effects compared to the measured bulk density that is used for the analytical calculation. Additionally, the regrind exhibits a fluctuating throughput due to the non-constant bulk density, which results from an irregular regrind shape and a broad size distribution.Item Open Access Compounding, rheology and numerical simulation of highly filled graphite compounds for potential fuel cell applications(2023) Celik, Alptekin; Willems, Fabian; Tüzün, Mustafa; Marinova, Svetlana; Heyn, Johannes; Fiedler, Markus; Bonten, ChristianHighly filled plastics may offer a suitable solution within the production process for bipolar plates. However, the compounding of conductive additives and the homogeneous mixing of the plastic melt, as well as the accurate prediction of the material behavior, pose a major challenge for polymer engineers. To support the engineering design process of compounding by twin-screw extruders, this present study offers a method to evaluate the achievable mixing quality based on numerical flow simulations. For this purpose, graphite compounds with a filling content of up to 87 wt.-% were successfully produced and characterized rheologically. Based on a particle tracking method, improved element configurations were found for twin-screw compounding. Furthermore, a method to characterize the wall slip ratios of the compounded material system with different filler content is presented, since highly filled material systems often tend to wall slip during processing, which could have a very large influence on accurate prediction. Numerical simulations of the high capillary rheometer were conducted to predict the pressure loss in the capillary. The simulation results show a good agreement and were experimentally validated. In contrast to the expectation, higher filler grades showed only a lower wall slip than compounds with a low graphite content. Despite occurring wall slip effects, the developed flow simulation for the design of slit dies can provide a good prediction for both low and high filling ratios of the graphite compounds.
- «
- 1 (current)
- 2
- 3
- »