04 Fakultät Energie-, Verfahrens- und Biotechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5
Browse
8 results
Search Results
Item Open Access Miscibility and phase separation in PMMA/SAN blends investigated by nanoscale AFM-IR(2021) Resch, Julia; Dreier, Julia; Bonten, Christian; Kreutzbruck, MarcItem Open Access Prediction of the bubble growth behavior by means of the time-, temperature-, pressure- and blowing agent concentration-dependent transient elongational viscosity function of polymers(2024) Schaible, Tobias; Bonten, ChristianBubble growth processes are highly complex processes, which are not only dependent on the foaming process parameters (temperature, pressure and blowing agent concentration) but also on the type and structure of the polymer used. Since the elongational viscosity at the bubble wall during bubble growth also depends on these influencing factors, the so-called transient elongational viscosity plays a key role in describing the gas bubble growth behavior in polymer melts. The model-based description of the transient elongational viscosity function is difficult due to its dependence on time, Hencky strain and strain rate. Therefore, representative viscosities or shear viscosity models are usually used in the literature to predict the bubble growth behavior. In this work, the transient equibiaxial elongational viscosity function at the bubble wall during bubble growth is described holistically for the first time. This is achieved by extending the so-called molecular stress function (MSF) model by superposition principles (temperature, pressure and blowing agent concentration) and by using the elongational deformation behavior (Hencky strain and strain rate) at the bubble wall during the initial, and thus viscosity-driven, bubble growth process. Therefore, transient uniaxial elongational viscosity measurements are performed and the non-linear MSF model parameters of the two investigated polymers PS (linear polymer chains) and PLA (long-chain branched polymer chains) are determined. By applying the superposition principles and by changing the strain mode parameter to the equibiaxial case in the MSF model, the transient equibiaxial viscosity master curve is obtained and used to describe the bubble growth process. The results show that the extended MSF model can fully predict the transient equibiaxial elongational viscosity function at the bubble wall during bubble growth processes. The bubble growth behavior over time can then be realistically described using the defined transient equibiaxial elongational viscosity function at the bubble wall. This is not possible, for example, with a representative viscosity and therefore clearly demonstrates the influence and importance of knowing the transient deformation behavior that prevails at the bubble wall during bubble growth processes.Item Open Access Deformation behavior investigation of auxetic structure made of poly(butylene adipate-co-terephthalate) biopolymers using finite element method(2023) Schneider, Yanling; Guski, Vinzenz; Schmauder, Siegfried; Kadkhodapour, Javad; Hufert, Jonas; Grebhardt, Axel; Bonten, ChristianAuxetic structures made of biodegradable polymers are favorable for industrial and daily life applications. In this work, poly(butylene adipate-co-terephthalate) (PBAT) is chosen for the study of the deformation behavior of an inverse-honeycomb auxetic structure manufactured using the fused filament fabrication. The study focus is on auxetic behavior. One characteristic of polymer deformation prediction using finite element (FE) simulation is that no sounded FE model exists, due to the significantly different behavior of polymers under loading. The deformation behavior prediction of auxetic structures made of polymers poses more challenges, due to the coupled influences of material and topology on the overall behavior. Our work presents a general process to simulate auxetic structural deformation behavior for various polymers, such as PBAT, PLA (polylactic acid), and their blends. The current report emphasizes the first one. Limited by the state of the art, there is no unified regulation for calculating the Poisson’s ratio n for auxetic structures. Here, three calculation ways of n are presented based on measured data, one of which is found to be suitable to present the auxetic structural behavior. Still, the influence of the auxetic structural topology on the calculated Poisson’s ratio value is also discussed, and a suggestion is presented. The numerically predicted force-displacement curve, Poisson’s ratio evolution, and the deformed auxetic structural status match the testing results very well. Furthermore, FE simulation results can easily illustrate the stress distribution both statistically and local-topology particularized, which is very helpful in analyzing in-depth the auxetic behavior.Item Open Access Mechanical properties of 3D-printed liquid crystalline polymers with low and high melting temperatures(2023) Johann, Kai S.; Wolf, Andreas; Bonten, ChristianAdditive manufacturing allows for the production of complex components using various types of materials such as plastics, metals and ceramics without the need for molding tools. In the field of high-performance polymers, semi-crystalline polymers such as polyetheretherketone (PEEK) or amorphous polymers such as polyetherimide (PEI) are already successfully applied. Contrary to semi-crystalline and amorphous polymers, thermotropic liquid crystalline polymers (LCPs) do not change into an isotropic liquid during melting. Instead, they possess anisotropic properties in their liquid phase. Within the scope of this work, this special group of polymers was investigated with regard to its suitability for processing by means of fused filament fabrication. Using an LCP with a low melting temperature of around 280 °C is compared to processing an LCP that exhibits a high melting temperature around 330 °C. In doing so, it was revealed that the achievable mechanical properties strongly depend on the process parameters such as the direction of deposition, printing temperature, printing speed and layer height. At a layer height of 0.10 mm, a Young’s modulus of 27.3 GPa was achieved. Moreover, by employing an annealing step after the printing process, the tensile strength could be increased up to 406 MPa at a layer height of 0.15 mm. Regarding the general suitability for FFF as well as the achieved uniaxial mechanical properties, the LCP with a low melting temperature was advantageous compared to the LCP with a high melting temperature.Item Open Access Investigation of auxetic structural deformation behavior of PBAT polymers using process and finite element simulation(2023) Schneider, Yanling; Guski, Vinzenz; Sahin, Ahmet O.; Schmauder, Siegfried; Kadkhodapour, Javad; Hufert, Jonas; Grebhardt, Axel; Bonten, ChristianThe current work investigates the auxetic tensile deformation behavior of the inversehoneycomb structure with 5 x 5 cells made of biodegradable poly(butylene adipate-coterephthalate) (PBAT). Fused deposition modeling, an additive manufacturing method, was used to produce such specimens. Residual stress (RS) and warpage, more or less, always exist in such specimens due to their layer-by-layer fabrication, i.e., repeated heating and cooling. The RS influences the auxetic deformation behavior, but its measurement is challenging due to its very fine structure. Instead, the finite-element (FE)-based process simulation realized using an ABAQUS plug-in numerically predicts the RS and warpage. The predicted warpage shows a negligibly slight deviation compared to the design topology. This process simulation also provides the temperature evolution of a small-volume material, revealing the effects of local cyclic heating and cooling. The achieved RS serves as the initial condition for the FE model used to investigate the auxetic tensile behavior. With the outcomes from FE calculation without consideration of the RS, the effect of the RS on the deformation behavior is discussed for the global force-displacement curve, the structural Poisson’s ratio evolution, the deformed structural status, the stress distribution, and the evolution, where the first three and the warpage are also compared with the experimental results. Furthermore, the FE simulation can easily provide the global stress-strain flow curve with the total stress calculated from the elemental stresses.Item Open Access Extrusion-based 3D printing of poly(ethylene glycol) diacrylate hydrogels containing positively and negatively charged groups(2018) Joas, Sebastian; Tovar, Günter E. M.; Celik, Oguz; Bonten, Christian; Southan, AlexanderHydrogels are an interesting class of materials used in extrusion-based 3D printing, e.g., for drug delivery or tissue engineering. However, new hydrogel formulations for 3D printing as well as a detailed understanding of crucial formulation properties for 3D printing are needed. In this contribution, hydrogels based on poly(ethylene glycol) diacrylate (PEG-DA) and the charged monomers 3-sulfopropyl acrylate and [2-(acryloyloxy)ethyl]trimethylammonium chloride are formulated for 3D printing, together with Poloxamer 407 (P407). Chemical curing of formulations with PEG-DA and up to 5% (w/w) of the charged monomers was possible without difficulty. Through careful examination of the rheological properties of the non-cured formulations, it was found that flow properties of formulations with a high P407 concentration of 22.5% (w/w) possessed yield stresses well above 100 Pa together with pronounced shear thinning behavior. Thus, those formulations could be processed by 3D printing, as demonstrated by the generation of pyramidal objects. Modelling of the flow profile during 3D printing suggests that a plug-like laminar flow is prevalent inside the printer capillary. Under such circumstances, fast recovery of a high vicosity after material deposition might not be necessary to guarantee shape fidelity because the majority of the 3D printed volume does not face any relevant shear stress during printing.Item Open Access A novel in-line measurement and analysis method of bubble growth-dependent strain and deformation rates during foaming(2024) Schaible, Tobias; Bonten, ChristianBubble growth processes are highly influenced by the elongational viscosity of the blowing agent-loaded polymer melt. Therefore, the elongational viscosity is an important parameter for the development of new polymers for foaming applications, as well as for the prediction of bubble growth processes. Thus, knowledge of the initial expansion and deformation behavior in dependency on the polymer, the blowing agent concentration, and the process conditions is necessary. This study presents a novel method for the in-line observation and analysis of the initial expansion and deformation behavior within the bead foam extrusion process. For this purpose, nitrogen as the blowing agent was injected into the polymer melt (PS and PLA) during the extrusion process. The in-line observation system consists of a borescope equipped with a camera, which was integrated into the water box of an underwater pelletizer. The camera is controlled by a developed trigger by means of angular step signal analysis of a rotary encoder on the cutter shaft of the underwater pelletizer. Thus, images can be taken at any time during the foaming process depending on the cutter position to the die outlet. It is shown that the developed method provides reliable results and that the differences of the initial expansion and deformation behavior during bubble growth can be analyzed in-line in dependency on real foaming process conditions and the type of polymer used.Item Open Access Rigid amorphous fraction as an indicator for polymer-polymer interactions in highly filled plastics(2021) Benz, Johannes; Bonten, ChristianAbove a percolation threshold a flow restriction has to be overcome by higher pressure in plastic processing. Besides amount and geometry of fillers, the interactions of polymer and filler are important. By differing the amorphous phase of polymers into a rigid amorphous and a mobile amorphous fraction, predictions about interactions are possible. The objective is the generation of a flow restriction and the combined investigation of polymer-particle interaction. SiO2 was used up to 50 vol.% in different spherical sizes in PLA and PP. A capillary-rheometer was used as a tool to create a yield point and by that investigations into the state of the flow restriction were possible. All produced compounds showed, in plate-plate rheometry, an increase in viscosity for lower shear rates and a significant change in the storage modulus. In DSC, hardly any specific rigid amorphous fraction was detectable, which suggests that there is a minor interaction between macromolecules and filler. This leads to the conclusion that the change in flow behavior is mainly caused by a direct interaction between the particles, even though they are theoretically too far away from each other. First images in the state of the yield point show a displacement of the particles against each other.