04 Fakultät Energie-, Verfahrens- und Biotechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5
Browse
8 results
Search Results
Item Open Access Degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with regenerated cellulose fibers(2024) Seitz, Michael; Rihm, Rainer; Bonten, ChristianPHBV is a promising plastic for replacing conventional petroleum-based plastics in the future. However, the mechanical properties of PHBV are too low for use in high-stress applications and the degradation of the polymer limits possible applications. In this work, the mechanical properties were, therefore, increased using bio-based regenerated cellulose fibers and degradation processes of the PHBV-RCF composites were detected in accelerated aging tests under various environmental conditions. Mechanical, optical, rheological and thermal analysis methods were used for this characterization. The fibers significantly increased the mechanical properties, in particular the impact strength. Different degradation mechanisms were identified. UV radiation caused the test specimens to fade significantly, but no reduction in mechanical properties was observed. After storage in water and in aqueous solutions, the mechanical properties of the compounds were significantly reduced. The reason for this was assumed to be hydrolytic degradation catalyzed by higher temperatures. The hydrolytic degradation of PHBV was mainly caused by erosion from the test specimen surface. By exposing the regenerated cellulose fibers, this effect could now also be visually verified. For the use of regenerated cellulose fiber-reinforced PHBV in more durable applications, the aging mechanisms that occur must be prevented in the future through the use of stabilizers.Item Open Access Mechanical properties of 3D-printed liquid crystalline polymers with low and high melting temperatures(2023) Johann, Kai S.; Wolf, Andreas; Bonten, ChristianAdditive manufacturing allows for the production of complex components using various types of materials such as plastics, metals and ceramics without the need for molding tools. In the field of high-performance polymers, semi-crystalline polymers such as polyetheretherketone (PEEK) or amorphous polymers such as polyetherimide (PEI) are already successfully applied. Contrary to semi-crystalline and amorphous polymers, thermotropic liquid crystalline polymers (LCPs) do not change into an isotropic liquid during melting. Instead, they possess anisotropic properties in their liquid phase. Within the scope of this work, this special group of polymers was investigated with regard to its suitability for processing by means of fused filament fabrication. Using an LCP with a low melting temperature of around 280 °C is compared to processing an LCP that exhibits a high melting temperature around 330 °C. In doing so, it was revealed that the achievable mechanical properties strongly depend on the process parameters such as the direction of deposition, printing temperature, printing speed and layer height. At a layer height of 0.10 mm, a Young’s modulus of 27.3 GPa was achieved. Moreover, by employing an annealing step after the printing process, the tensile strength could be increased up to 406 MPa at a layer height of 0.15 mm. Regarding the general suitability for FFF as well as the achieved uniaxial mechanical properties, the LCP with a low melting temperature was advantageous compared to the LCP with a high melting temperature.Item Open Access Calibration of fiber orientation simulations for LFT : a new approach(2020) Willems, Fabian; Reitinger, Philip; Bonten, ChristianShort fiber reinforced thermoplastics (SFT) are extensively used due to their excellent mechanical properties and low processing costs. Long fiber reinforced thermoplastics (LFT) show an even more interesting property profile and are increasingly used for structural parts. However, their processing by injection molding is not as simple as for SFT, and their anisotropic properties resulting from the fiber microstructure (fiber orientation, length, and concentration) pose a challenge with regard to the engineering design process. To reliably predict the structural mechanical properties of fiber reinforced thermoplastics by means of micromechanical models, it is also necessary to reliable predict the fiber microstructure. Therefore, it is crucial to calibrate the underlying prediction models, such as the fiber orientation model, within the process simulation. In general, these models may be adjusted manually, but this is usually ineffective and time-consuming. To overcome this challenge, a new calibration method was developed to automatically calibrate the fiber orientation model parameters of the injection molding simulation by means of optimization methods. This optimization routine is based on experimentally determined fiber orientation distributions and leads to optimized parameters for the fiber orientation prediction model within a few minutes. To better understand the influence of the model parameters, different versions of the fiber orientation model, as well as process and material influences on the resulting fiber orientation distribution, were investigated. Finally, the developed approach to calibrate the fiber orientation model was compared with a classical approach, a direct optimization of the whole process simulation. Thereby, the new optimization approach shows a calculation time reduced by the factor 15 with comparable error variance.Item Open Access Deformation behavior of 3D printed auxetic structures of thermoplastic polymers : PLA, PBAT, and blends(2023) Hufert, Jonas; Grebhardt, Axel; Schneider, Yanling; Bonten, Christian; Schmauder, SiegfriedAuxetic structures have a negative Poisson’s ratio and therefore expand transversely to the direction of loading instead of tapering. This unique behavior is not caused by the materials used, but by the structure, and thus offers completely new functionalities and design possibilities. As a rule, auxetic structures have a very complex geometry, which makes cost-effective production possible only by means of additive manufacturing processes. Due to the high design freedom of the strand deposition method, it makes sense to manufacture auxetic structures using this process. Therefore, in this project, polylactide acid (PLA), polybutylene adipate terephthalate (PBAT), and blends of the two polymers were produced and characterized. Filaments of the two polymers and a blend were extruded, processed into auxetic structures by strand deposition process (SDP), and investigated for their properties, primarily their Poisson’s ratio. The Poisson’s ratio was determined and the influence of the material on it was identified. A specific number of 5 × 5 unit cells has been found to be ideal for investigation. Dual printed specimens showed a similar auxetic behavior as the specimens made of pure PBAT. Likewise, multiple loading and unloading of the structure is possible. Furthermore, in-situ computed tomography revealed the detailed characterization of the initial state, including the warpage of the structures, damage, and traced auxetic behavior in detail.Item Open Access Rheology in the presence of carbon dioxide (CO2) to study the melt behavior of chemically modified polylactide (PLA)(2020) Dörr, Dominik; Standau, Tobias; Murillo Castellón, Svenja; Bonten, Christian; Altstädt, VolkerFor the preparation of polylactide (PLA)-based foams, it is commonly necessary to increase the melt strength of the polymer. Additives such as chain extenders (CE) or peroxides are often used to build up the molecular weight by branching or even crosslinking during reactive extrusion. Furthermore, a blowing agent with a low molecular weight, such as carbon dioxide (CO2), is introduced in the foaming process, which might affect the reactivity during extrusion. Offline rheological tests can help to measure and better understand the kinetics of the reaction, especially the reaction between the polymer and the chemical modifier. However, rheological measurements are mostly done in an inert nitrogen atmosphere without an equivalent gas loading of the polymer melt, like during the corresponding reactive extrusion process. Therefore, the influence of the blowing agent itself is not considered within these standard rheological measurements. Thus, in this study, a rheometer equipped with a pressure cell is used to conduct rheological measurements of neat and chemical-modified polymers in the presence of CO2 at pressures up to 40 bar. The specific effects of CO2 at elevated pressure on the reactivity between the polymer and the chemical modifiers (an organic peroxide and as second choice, an epoxy-based CE) were investigated and compared. It could be shown in the rheological experiments that the reactivity of the chain extender is reduced in the presence of CO2, while the peroxide is less affected. Finally, it was possible to detect the recrystallization temperature Trc of the unmodified and unbranched sample by the torque maximum in the rheometer, representing the tear off of the stamp from the sample. Trc was about 13 K lower in the CO2-loaded sample. Furthermore, it was possible to detect the influences of branching and gas loading simultaneously. Here the influence of the branching on Trc was much higher in comparison to a gas loading.Item Open Access Direct Joule heating as a means to efficiently and homogeneously heat thermoplastic prepregs(2020) Wellekötter, Jochen; Bonten, ChristianAlthough direct Joule heating is a known technique for heating carbon fiber reinforced plastics, it is a yet unexplored heating method for thermoplastic prepregs before back-injection molding. The knowledge obtained from resistance welding, for example, is not directly transferable because of considerably higher heated volumes and more complex shapes. In this study, the governing parameters and process limits are established for this method. The influences of the contacting, the materials used, and the size of the heated part are investigated with respect to the part temperature and heating efficiency. The findings show that the quality of heating is determined by the shape and size of the electrodes. Larger electrodes lead to a more homogeneous temperature distribution. Parts based on woven fabric can be heated more homogeneously because of the existence of intersections between rovings, generating contact between fibers. An increase in part width results in uneven heating behavior.Item Open Access Biobased immiscible polylactic acid (PLA) : poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) blends : impact of rheological and non-isothermal crystallization on the bead foaming behavior(2024) Brütting, Christian; Dreier, Julia; Bonten, Christian; Ruckdäschel, HolgerNowadays, bead foams are of great interest due to their high lightweight potential. The processing of such foams strongly depends on the crystallization and rheological behavior of the polymers used. By blending polymers, these properties can be tailored to obtain beaded foams with low density, small cell size and high cell density. As a bio-based polymer, PLA is of great interest due to its renewable carbon source. PLA suffers from its low thermal and rheological properties, which can be compensated by using blends. The correlation between the PLA/PHBV ratio and the rheological as well as the crystallization behavior was investigated. The use of PHBV as a minor phase significantly changes the rheological properties and increases the crystallization behavior of PLA. These findings were applied to the foam extrusion process to obtain low density bead foams. Bead foams with densities below 100 kg/m 3 , mean cell sizes below 50 µm and cell densities of 1 × 10 7 cells/cm 3 were obtained.Item Open Access Mutual and thermal diffusivities in binary mixtures of polystyrene with dissolved N2 or CO2 by dynamic light scattering(2024) Schmidt, Patrick S.; Jander, Julius H.; Alhadi, Fatima; Ratka, Marcel; Bonten, Christian; Klein, Tobias; Fröba, Andreas P.In physical foaming processes of thermoplastics, a liquid mixture consisting of a molten polymer with a dissolved blowing agent is extruded through a die or injected into a mold. The morphology of the foam matrix strongly depends on the mutual diffusion coefficient D11 of the liquid polymer-blowing agent mixture. For a better understanding of the underlying physical mechanisms during the foaming process and the development of corresponding models, accurate knowledge of D11 is needed. This work reports on the simultaneous measurement of D11 and the thermal diffusivity a of liquid mixtures consisting of polystyrene melts with dissolved nitrogen (N2) or carbon dioxide (CO2) at mass fractions wsolute up to 0.003 or 0.02 and temperatures T between (433 and 533) K using dynamic light scattering (DLS). The determined D11 range is between (1 and 4) × 109 m2⋅s-1 and are slightly larger for the mixtures containing N2 at a given T and wsolute. D11 could be determined with an average expanded relative uncertainty of 18%. Considering all investigated state points and the achieved experimental uncertainties, both D11 and a are independent on the amount of dissolved gas, despite relatively large mole fractions of the dissolved blowing agents xsolute of 0.997 and 0.93.