04 Fakultät Energie-, Verfahrens- und Biotechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5
Browse
3 results
Search Results
Item Open Access Assessing the application-specific substitutability of lithium-ion battery cathode chemistries based on material criticality, performance, and price(2021) Kiemel, Steffen; Glöser-Chahoud, Simon; Waltersmann, Lara; Schutzbach, Maximilian; Sauer, Alexander; Miehe, RobertThe material use of lithium-ion batteries (LIBs) is widely discussed in public and scientific discourse. Cathodes of state-of-the-art LIBs are partially comprised of high-priced raw materials mined under alarming ecological and social circumstances. Moreover, battery manufacturers are searching for cathode chemistries that represent a trade-off between low costs and an acceptable material criticality of the comprised elements while fulfilling the performance requirements for the respective application of the LIB. This article provides an assessment of the substitutability of common LIB cathode chemistries (NMC 111, -532, -622, -811, NCA 3%, -9%, LMO, LFP, and LCO) for five major fields of application (traction batteries, stationary energy storage systems, consumer electronics, power-/garden tools, and domestic appliances). Therefore, we provide a tailored methodology for evaluating the substitutability of products or components and critically reflect on the results. Outcomes show that LFP is the preferable cathode chemistry while LCO obtains the worst rating for all fields of application under the assumptions made (as well as the weighting of the considered categories derived from an expert survey). The ranking based on the substitutability score of the other cathode chemistries varies per field of application. NMC 532, -811, -111, and LMO are named recommendable types of cathodes.Item Open Access Market perspectives and future fields of application of odor detection biosensors within the biological transformation : a systematic analysis(2021) Full, Johannes; Baumgarten, Yannick; Delbrück, Lukas; Sauer, Alexander; Miehe, RobertThe technological advantages that biosensors have over conventional technical sensors for odor detection and the role they play in the biological transformation have not yet been comprehensively analyzed. However, this is necessary for assessing their suitability for specific fields of application as well as their improvement and development goals. An overview of biological basics of olfactory systems is given and different odor sensor technologies are described and classified in this paper. Specific market potentials of biosensors for odor detection are identified by applying a tailored methodology that enables the derivation and systematic comparison of both the performance profiles of biosensors as well as the requirement profiles for various application fields. Therefore, the fulfillment of defined requirements is evaluated for biosensors by means of 16 selected technical criteria in order to determine a specific performance profile. Further, a selection of application fields, namely healthcare, food industry, agriculture, cosmetics, safety applications, environmental monitoring for odor detection sensors is derived to compare the importance of the criteria for each of the fields, leading to market-specific requirement profiles. The analysis reveals that the requirement criteria considered to be the most important ones across all application fields are high specificity, high selectivity, high repeat accuracy, high resolution, high accuracy, and high sensitivity. All these criteria, except for the repeat accuracy, can potentially be better met by biosensors than by technical sensors, according to the results obtained. Therefore, biosensor technology in general has a high application potential for all the areas of application under consideration. Health and safety applications especially are considered to have high potential for biosensors due to their correspondence between requirement and performance profiles. Special attention is paid to new areas of application that require multi-sensing capability. Application scenarios for multi-sensing biosensors are therefore derived. Moreover, the role of biosensors within the biological transformation is discussed.Item Open Access Comparative life cycle sustainability assessment of mono- vs. bivalent operation of a crucible melting furnace(2022) Schutzbach, Maximilian; Kiemel, Steffen; Miehe, Robert; Köse, Ekrem; Mages, Alexander; Sauer, AlexanderThe benefits of energy flexibility measures have not yet been conclusively assessed from an ecological, economic, and social perspective. Until now, analysis has focused on the influence of changes in the energy system and the ecological and economic benefits of these. Therefore, the objective of this study was to perform a life cycle sustainability assessment of energy flexibility measures on the use case of a bivalent crucible melting furnace in comparison with a monovalent one for aluminum light metal die casting. The system boundary was based on a cradle-to-gate approach in Germany and includes the production of the necessary process technologies and energy infrastructure and the utilization phase of the crucible melting furnaces in non-ferrous metallurgy. The LCSA is performed for different economic and environmental scenarios over a 25-year lifetime to account for potential adjustments in the energy system and volatile energy prices. In summary, it can be said that over the entire service life, no complete ecological, economic, and social advantage of energy flexibility measures through a bivalent system can be demonstrated. Only a temporarily better life cycle sustainability performance of the bivalent furnace can be shown. All results must be considered with the caveat that the bivalent crucible melting furnace has not yet been investigated in actual operation and the calculations of the utilization phase are based on the monovalent crucible melting furnace. To further sharpen the results, more research is needed and the use of actual data for bivalent operation.