04 Fakultät Energie-, Verfahrens- und Biotechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5
Browse
7 results
Search Results
Item Open Access Thin organic‐inorganic anti‐fouling hybrid‐films for microreactor components(2022) Neßlinger, Vanessa; Welzel, Stefan; Rieker, Florian; Meinderink, Dennis; Nieken, Ulrich; Grundmeier, GuidoDeposit formation and fouling in reactors for polymer production and processing especially in microreactors is a well‐known phenomenon. Despite the flow and pressure loss optimized static mixers, fouling occurs on the surfaces of the mixer elements. To improve the performance of such parts even further, stainless steel substrates are coated with ultra‐thin films which have low surface energy, good adhesion, and high durability. Perfluorinated organosilane (FOTS) films deposited via chemical vapor deposition (CVD) are compared with FOTS containing zirconium oxide sol‐gel films regarding the prevention of deposit formation and fouling during polymerization processes in microreactors. Both film structures led to anti‐adhesive properties of microreactor component surfaces during aqueous poly(vinylpyrrolidone) (PVP) synthesis. To determine the morphology and surface chemistry of the coatings, different characterization methods such as X‐ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy as well as microscopic methods such as field‐emission scanning electron microscopy (FE‐SEM) and atomic force microscopy (AFM) are applied. The surface free energy and wetting properties are analyzed by means of contact angle measurements. The application of thin film‐coated mixing elements in a microreactor demonstrates a significant lowering in pressure increase caused by a reduced deposit formation.Item Open Access Modeling of diffusive transport of polymers moments using limiting cases of the Maxwell-Stefan model(2022) Welzel, Stefan; Säckel, Winfried; Nieken, UlrichA polymer distribution is usually represented by its moments. Thus, to calculate transport in a polymer system, a formulation for the transport of moments of the polymer is needed. This is only possible if the moments close or if there is a suitable closing condition. To archive this, two simplifications of the Stefan-Maxwell diffusion are derived, which convert the transport equation of polymeric species to a closed set of transport equations for the polymer moments. The first approach corresponds to an infinitely diluted polymer system, whereas the second one describes a highly concentrated polymer system. Both formulations are compared with the full Stefan‐Maxwell model of a ternary mixture of a solvent and two polymer species of different chain length.Item Open Access Carbon‐methanol based adsorption heat pumps : identifying accessible parameter space with carbide‐derived carbon model materials(2020) Träger, Lisa; Gläsel, Jan; Scherle, Marc; Hartmann, Julian; Nieken, Ulrich; Etzold, Bastian J. M.In adsorption heat pumps, the properties of the porous adsorbent and the refrigerant determine the performance. Major parameters for this working pair are the total uptake of the adsorptive, its kinetics, and the heat transfer characteristics. In the technical application despite powdered adsorbents, thin consolidated layers of the adsorbent can be attractive and obtained by a binder‐based approach but likely result in competing material properties. Thus, for a process optimization, the accessible parameter space and interdependencies have to be known and were deduced in this work for model porous carbons (carbide‐derived carbons derived from TiC and ZrC) and methanol as well as the addition of different amounts of boron nitride, silver, and graphite as heat‐conductive agents and the use of two binders.Item Open Access Wall layer formation in continuously operated tubular reactors for free‐radical polymerizations(2023) Welzel, Stefan; Zander, Christian; Nieken, UlrichPolymer fouling is a major problem for the operation of continuous reactors. Therefore, it is important to understand and quantitatively describe the mechanisms leading to formation of fouling deposits. In this work, a CFD model for the radical polymerization of N-vinylpyrrolidone is presented, where the reaction kinetics, a viscosity model, and a transport model for polymer moments are determined from independent experiments. The model is compared to experimental obtained residence time distributions in capillary reactors over a wide range of concentrations. Model predictions are in good agreement with experimental findings.Item Open Access UV/VIS-spectroscopic inline measurement for the detection of fouling processes during the polymerization of N-vinylpyrrolidone(2023) Spoor, Erik; Welzel, Stefan; Nieken, Ulrich; Rädle, MatthiasWith the goal to better process the monitoring of occurring fouling, a backscatter probe was developed to perform in-line measurements in a half-shell reactor during the reaction of N-vinylpyrrolidone (NVP) to polyvinylpyrrolidone (PVP). The measurement technique detects the changes of bands in the UV range, which allows a direct correlation with the concentration. Thus, the measured absorbance signal allows a conclusion on the accumulation of fouling in the reactor and on changes in the conversion at the measurement location.Item Open Access Modeling strategies for the propagation of terminal double bonds during the polymerization of N‐vinylpyrrolidone and experimental validation(2020) Zander, Christian; Hungenberg, Klaus‐Dieter; Schall, Thomas; Schwede, Christian; Nieken, UlrichBased on a recently suggested reaction mechanism, which involves the production and propagation of terminal double bonds (TDBs), kinetic models for the polymerization of N‐vinylpyrrolidone in aqueous solution are developed. Two modeling strategies, the classes and the pseudodistribution approach, are applied to handle the multidimensional property distributions that result from this reaction mechanism and to get detailed structural property information, e.g., on the chain length distribution and the distribution of TDBs. The structural property information is then used to develop reduced models with significantly lower computational effort, which can be used for process design, on‐line applications or coupled to computational fluid dynamic simulations. To validate the derivations, the models are first compared against each other and finally to experimental results from a continuous stirred tank reactor. The evolution of monomer conversion and molecular weight average data as well as molecular weight distributions can be represented very well by the models that are derived in this article. These results support the correctness of the reaction mechanism predicted by quantum mechanical simulations.Item Open Access Validation of an extended kinetic model of free‐radical N‐vinylpyrrolidone polymerization(2023) Welzel, Stefan; Burmeister, Jule; Höppchen, Oliver; Nieken, UlrichTo predict the polymer properties produced by free-radical polymerization of N-vinylpyrrolidone (NVP) in aqueous solution a detailed kinetic model has been developed. The kinetic model allows to calculate the chain length distribution, the number of branching points, and the number of terminal double bonds (TDB). The latter is accounted for since TDBs are a precondition for branching. While monomer conversion can be predicted sufficiently using independently determined rate constants for propagation and termination, here the predictions of structural properties by a newly developed extended kinetic model to experimental findings are compared. Polymer produced in a continuous stirred tank reactor is analyzed by gel permeation chromatography (GPC), field flow fractionation (FFF), and high-pressure liquid chromatography (HPLC).