04 Fakultät Energie-, Verfahrens- und Biotechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5
Browse
7 results
Search Results
Item Open Access Oxy-combustion of solid recovered fuel in a semi-industrial CFB reactor: on the implications of gas atmosphere and combustion temperature(2022) Moreno, Joseba; Schmid, Max; Scharr, Steven; Scheffknecht, GünterOxy-fuel combustion of refuse waste is gaining considerable attention as a viable CO2 negative technology that can enable the continued use of stationary combustion plants during the transition to renewable energy sources. Compared to fossil fuels, waste-derived fuels tend to be highly heterogeneous and to contain a greater amount of alkaline metals and chlorine. Therefore, experimental studies are mandatory to thoroughly elucidate refuse materials’ combustion and pollutant formation behavior. This paper presents an experimental investigation on the air and oxy-fuel combustion of solid recovered fuel at a 200 kWth circulating fluidized bed facility. In the course of two experimental campaigns, the effects of combustion atmosphere and temperature on pollutant formation (i.e., NOx, SO2, and HCl) and reactor hydrodynamics were systematically studied. In contrast to air-firing conditions, the experimental results showed that oxy-fuel combustion enhanced the volume concentration of NOx by about 50% while simultaneously decreasing the fuel-specific NOx emissions (by about 33%). The volume concentrations of SO2 and HCl were significantly influenced by the absorption capacity of calcium-containing ash particles, yielding corresponding values close to 10 and 200 ppmv at 871-880 °C under oxy-fuel combustion conditions. In addition, the analysis of hydrodynamic data revealed that smooth temperature profiles are indispensable to mitigate bed sintering and agglomeration risks during oxy-fuel operation. The results included in this study provide a valuable contribution to the database of experimental information on the oxy-fuel combustion of alternative fuels, which can be applied in future process model validations and scale-up studies.Item Open Access Oxy-fuel combustion of hard coal, wheat straw, and solid recovered fuel in a 200 kWth calcium looping CFB calciner(2021) Moreno, Joseba; Hornberger, Matthias; Schmid, Max; Scheffknecht, GünterItem Open Access Novel metal mesh filter using water-based regeneration for small-scale biomass boilers(2020) Baumgarten, Björn; Grammer, Peter; Ehard, Ferdinand; Winkel, Oskar; Vogt, Ulrich; Baumbach, Günter; Scheffknecht, Günter; Thorwarth, HaraldParticulate matter emissions are a key issue of modern biomass boilers. A novel gas cleaning method using a metal mesh filter combined with water-based cleaning was developed and tested. The filter was tested batch-wise. Flue gas of a commercial 50-kW boiler was filtered until a pressure drop of 2000 Pa was reached. Afterwards, the filter was regenerated. The initial prototype used ultrasound in order to remove the filter cake from the filter candles. Regeneration was complete and, even after boiler malfunctions producing tar, the filter cake could still be removed. Given the good results, a second cleaning mode, flushing the filter candles with water, was tested. The results were as good as with ultrasonic cleaning. Peak mass collection efficiency was very high with 98 ± 2% (burning wood pellets). However, directly after cleaning, the first layer of filter cake has to be developed. In this initial phase, collection efficiency is low. Service time until maximum pressure drop was reached depended on the gas velocity. Using pellets as fuel, at a gas velocity of 66.6 m/h, 12-h service time was reached and 4.1 g dust was collected per square meter filter surface, while at 33.3 m/h, service time increased to 55 h and collected dust to 13.9 g/m2. Using low-quality wood chips, the raw gas dust loading was much higher but also the maximum loading of the filter was higher with 13.3 to 28.9 g dust separated per square meter. Still, the service time decreased to 3.4 respective 38 h. Peak collection efficiency increased to 99.5 ± 0.8%. The overall collection efficiency including the buildup of the filter cake depends on the gas velocity and fuel. It ranges from 74 ± 4 to 91 ± 1%. The feasibility of the filter concept could be proven, and further development towards a commercial application is in progress. Metal mesh filters with countercurrent cleaning showed a high potential given their simple and robust design, as well as high collection efficiency.Item Open Access Experimental investigations of the ignitability of several coal dust qualities(2021) Youssefi, Reyhane; Segers, Tom; Norman, Frederik; Maier, Jörg; Scheffknecht, GünterItem Open Access Experimental parameter study on synthesis gas production by steam-oxygen fluidized bed gasification of sewage sludge(2021) Schmid, Max; Hafner, Selina; Scheffknecht, GünterItem Open Access Pilot-scale experiences on a plasma ignition system for pulverized fuels(2021) Youssefi, Reyhane; Maier, Jörg; Scheffknecht, GünterItem Open Access Evaluation of a metal mesh filter prototype with wet regeneration(2021) Baumgarten, Björn; Grammer, Peter; Ehard, Ferdinand; Winkel, Oskar; Vogt, Ulrich; Baumbach, Günter; Scheffknecht, Günter; Thorwarth, HaraldWood combustion is a major part of the current efforts to reduce CO2 emissions. However, wood combustion leads to emissions of other pollutants like fine particulate matter. A new option to reduce particulate matter emissions is a metal mesh filter with counter current flushing. An automatic prototype was tested under realistic conditions including starts and stops of the boiler. For regeneration, the filter was flushed using water in opposite flow direction. The water was recycled multiple times to limit water consumption. The results are very promising. Regeneration was successful and no signs of decay could be observed over 419.5 h of operation and 234 regenerations. The filter can be operated during all phases of boiler operation, which is a major step forward compared to alternative secondary measures. Separation efficiency was high with 80-86%, even though the filter showed internal leakage, which reduced the separation efficiency. Additionally, waste products were examined. About 1000 l wastewater can be expected to be produced every month, which could be disposed using the communal waste water system, given the low heavy metal loading. A part of the fine particulate matter is unsoluble and has to be removed from the regeneration water before reuse. The unsoluble fraction contains the majority of heavy metals and has to be disposed as fly ash or used for urban mining. Generally spoken, the metal mesh filter is a new, promising option which can overcome limitations of current secondary measures without increasing costs given its simple and robust construction.