04 Fakultät Energie-, Verfahrens- und Biotechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5
Browse
2 results
Search Results
Item Open Access Past, present and future of glycolipids from Ustilaginaceae : a review on cellobiose lipids and mannosylerythritol lipids(2024) Münßinger, Sini; Beck, Alexander; Oraby, Amira; Zibek, SusanneThe glycolipids cellobiose lipids (CL) and mannosylerythritol lipids (MEL) are biosurfactants mainly synthesized by microorganisms of the Ustilaginaceae family. They have a large structural diversity, varying in their sugar moieties and the attached fatty acids, resulting in a prospectively broad range of applications. This literature review provides a detailed overview of known microbial producers of CL and MEL, and their respective metabolic pathways that result in different molecular structures. Further, current advances in the aerobic fermentative synthesis of the glycolipids and their purification methods are illustrated. All influencing factors identified to date with regard to the fermentation are highlighted in detail: For CL synthesis usually hydrophilic carbon sources are used as substrate, whereas hydrophobic carbon sources are usually metabolized to MEL. Nitrogen limitation was described as a major trigger for glycolipid synthesis and an acidic pH range was favored for increased CL production. An overview of applied fermentation parameters in recent publications (e.g., substrate‐concentrations, feeding approaches) demonstrates the future potential of CL and MEL production optimization. Foaming during fermentation is either combated or exploited by foam fractionation as the first purification step. The current purification processes focus on solvent extractions and chromatography in the laboratory scale and a need for development was identified for future scale‐up. Finally, environmental hotspots during CL and MEL production are presented and future optimization potentials are highlighted.Item Open Access Comprehensive characterization and evaluation of the process chain and products from Euphausia superba exocuticles to chitosan(2023) Hahn, Thomas; Egger, Jeannine; Krake, Simon; Dyballa, Michael; Stegbauer, Linus; Seggern, Nils von; Bruheim, Inge; Zibek, SusanneAntarctic krill (Euphausia superba) is a source for compounds of high nutritive value. Within that process of extraction, exocuticles (shells) accumulate which are currently disposed. A valorization of the compounds of the exocuticle such as chitosan would be beneficial to avoid waste and to obtain a versatile polymer at the same time. In contrast to previous investigations focusing on chitosan production from whole krill, we applied and optimized process stages of the chitosan production from the exocuticles, performing a comprehensive analytical evaluation of the whole process, the side streams and the products for the first time. Degreasing was the first step resulting in a krill oil yield of 6.2% using ethanol. The fatty acid profile exhibited high contents of phospholipids (21.2%). Citric acid offered a demineralization efficiency of 93%. Deproteinization investigation revealed 2 M NaOH and 90°C for 2.5 h to be the best parameters, resulting in a deproteinization efficiency of 99.9% and a chitin content of 92.8%. The spectroscopic investigation indicated that the chitin has a crystallinity index of 76% and an acetylation degree of 88%. The deacetylation degrees of the resulting chitosans is determined to be 74%-88%, the molecular weight ranges from 102 to 126 kDa.