04 Fakultät Energie-, Verfahrens- und Biotechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5
Browse
230 results
Search Results
Item Open Access Precision 3D‐printed cell scaffolds mimicking native tissue composition and mechanics(2020) Erben, Amelie; Hörning, Marcel; Hartmann, Bastian; Becke, Tanja; Eisler, Stephan A.; Southan, Alexander; Cranz, Séverine; Hayden, Oliver; Kneidinger, Nikolaus; Königshoff, Melanie; Lindner, Michael; Tovar, Günter E. M.; Burgstaller, Gerald; Clausen‐Schaumann, Hauke; Sudhop, Stefanie; Heymann, MichaelCellular dynamics are modeled by the 3D architecture and mechanics of the extracellular matrix (ECM) and vice versa. These bidirectional cell‐ECM interactions are the basis for all vital tissues, many of which have been investigated in 2D environments over the last decades. Experimental approaches to mimic in vivo cell niches in 3D with the highest biological conformity and resolution can enable new insights into these cell‐ECM interactions including proliferation, differentiation, migration, and invasion assays. Here, two‐photon stereolithography is adopted to print up to mm‐sized high‐precision 3D cell scaffolds at micrometer resolution with defined mechanical properties from protein‐based resins, such as bovine serum albumin or gelatin methacryloyl. By modifying the manufacturing process including two‐pass printing or post‐print crosslinking, high precision scaffolds with varying Young's moduli ranging from 7‐300 kPa are printed and quantified through atomic force microscopy. The impact of varying scaffold topographies on the dynamics of colonizing cells is observed using mouse myoblast cells and a 3D‐lung microtissue replica colonized with primary human lung fibroblast. This approach will allow for a systematic investigation of single‐cell and tissue dynamics in response to defined mechanical and bio‐molecular cues and is ultimately scalable to full organs.Item Open Access Construction of robust Escherichia coli strains for large-scale production(2022) Ziegler, Martin; Takors, Ralf (Prof. Dr.-Ing.)The biotechnical production of many fine chemicals, proteins or pharmaceuticals depends on large-scale microbial cultivations. Due to limited mixing, heterogeneities in process relevant parameters such as nutrient concentrations arise in such fermentations. Escherichia coli (E. coli) is a model organism frequently used in the biotechnological industry. If E. coli is cultivated under heterogeneous conditions, biological reactions of the microorganism result in reduced process performance. Since large-scale fermentations are not economically feasible in academic settings, scale-down reactors that mimic aforementioned heterogeneities are used to investigate heterogenous fermentations. Previous studies in scale-down reactors unraveled that, depending on the process strategy, the unstable supply of a limiting primary carbon or nitrogen source such as glucose or ammonium is one of the underlying causes of process performance loss. Low concentrations of glucose or ammonium elicit the stringent response as a biological starvation reaction which comprises extensive transcriptional reactions. In the first project that contributes to this thesis, the regulatory and transcriptional reactions of the strains E. coli MG1655 and E. coli SR to repeated exposure to ammonium starvation zones were examined in a scale-down reactor. The scale-down reactor followed a two-compartment approach and consisted of a stirred tank reactor and a plug-flow reactor simulating passage through a starvation zone. E. coli SR is a strain with modulated stringent response. It was observed that short-term starvation stimuli do not trigger this regulatory program in E. coli SR and the transcriptional reaction was noticeably reduced. Long-term adaptation of the strain to repeated cycles of limitation and starvation also clearly differed from E. coli MG1655. Despite lack of the stringent response, E. coli SR showed no deficits in the assimilation of the limiting ammonium or in biomass yield on ammonium. In the second project of this thesis, a series of deletion strains with robust phenotype against glucose starvation zones were constructed. Candidate genes were identified and successively removed from the genome of E. coli MG1655 by Recombineering. The fundamental growth parameters of the strains were determined in shaking flask fermentations and no noticeable differences compared to E. coli MG1655 were found. Chemostat cultivations in a scale-down reactor with glucose as the limiting nutrient source revealed that the final strain of the deletion series, E. coli RM214, had a significantly lower maintenance coefficient under heterogeneous conditions than E. coli MG1655. Moreover, in an exemplary heterologous protein productionscenario E. coli RM214 rhaB- pJOE4056.2_tetA proved to be more robust to heterogeneities and showed a significantly higher product yield than E. coli MG1655 rhaB- pJOE4056.2_tetA. In the third project of this thesis, the production of pyruvate in E. coli MG1655 by inhibition of pyruvate dehydrogenase through CRISPR interference was investigated. A central goal was to achieve the stable production in nitrogen-limited conditions. For this, different target sequences in the operon pdhR-aceEF-lpd were tested and the strains cultivated in shaking flask fermentations. All tested target sequences were generally suitable to trigger the accumulation of pyruvate. Combined CRISPR interference against two target sequences did not lead to an increased pyruvate yield in most cases. In addition, the strains E. coli MG1655 pdCas9 psgRNA_aceE_234 and E. coli MG1655 pdCas9 psgRNA_aceE_234_pdhR_329 were characterized in two phase fermentations in lab-scale reactors. The initial phase was an unlimited exponential growth phase and was followed by an ammonium-limited production phase. E. coli MG1655 pdCas9 psgRNA_aceE_234 only produced pyruvate during the exponential phase, and reuptake of pyruvate occurred in the second phase. In contrast, E. coli MG1655 pdCas9 psgRNA_aceE_234_pdhR_329 stably produced pyruvate during the exponential and the ammonium-limited phase and is a potential chassis strain for the growth-decoupled production of pyruvate derived bioproducts. The overarching research issues of the projects were the characterization of strains in heterogeneous conditions and the development of new strategies to improve their performance. The collected data leads me to conclude that the construction of robust microbial strains for large-scale applications is both expedient and feasible. Tailored genetic modifications are the method of choice to achieve this goal. Furthermore, suitable genetic constructs offer promising possibilities for the stable growth-decoupled production of chemicals in nitrogen-limited conditions.Item Open Access Development of novel bispecific antibodies for cancer therapy targeting the receptor tyrosine kinases HER4 and EGFR(2024) Kühl, Lennart; Kontermann, Roland E. (Prof. Dr.)In this study, novel mono- and bispecific antibodies targeting the ErbB receptor family members EGFR and HER4 were investigated. Dual targeting of EGFR and HER4 by a bispecific, tetravalent antibody comprising a novel, antagonistic HER4-targeting antibody showed inhibition of proliferation and migration for a HB-EGF-stimulated ovarian cancer cell line. No inhibitory effects in a breast cancer cell line expressing EGFR and HER4 indicated that successful dual targeting does not solely rely on target expression. The complexity of HER4 with its isoforms and their different signaling properties makes HER4 a challenging cancer target that needs further in-depth research. To overcome resistances based on escape mutations located in the epitopes of clinically approved antibodies, novel antagonistic EGFR-targeting antibodies binding to a different epitope were developed. This epitope was mapped to domain III of EGFR and binding to clinically relevant EGFR ectodomain mutations resulted in inhibition of EGFR signaling in stable cell lines used as test systems. Favorable activities in comparison to clinically approved antibodies regarding inhibition of EGFR signaling and proliferation were observed for cancer cell lines expressing the EGFR wildtype. Bispecific T-cell engagers can lead to a T-cell mediated target cell killing independent of intracellular downstream signaling in the cancer cell. One challenge for the applicability of T-cell engagers in solid tumors is to keep the balance between T-cell mediated tumor cell killing and severe side-effects caused by a systemic activation of the immune system. Studies on eleven different eIg-based formats for EGFR-binding T-cell engagers showed that valency, geometry, and size influenced their activity profile. Furthermore, one bivalent and one trivalent, bispecific format were investigated for two novel EGFR-targeting moieties. As these molecules bind to clinically relevant escape mutations located in the ectodomain of EGFR, they are expected to show activity in patients with an acquired resistance to approved EGFR-targeting antibodies. These molecules led to a robust T-cell mediated cytotoxicity of cancer cells expressing EGFR. Additionally, benefits regarding an EGFR-level dependent cytotoxicity were observed for reduced binding to EGFR. An initial in vivo study using surrogate molecules in a syngeneic mouse model showed reduction of tumor growth and prolonged survival for treatment with a trivalent, bispecific T-cell engager comprising a novel EGFR-binding moiety. Taken together, beneficial effects of the novel molecules may contribute to improved therapies for patients with both pre-existing and acquired resistances to EGFR-targeting antibodies.Item Open Access A timed off-switch for dynamic control of gene expression in Corynebacterium glutamicum(2021) Siebert, Daniel; Altenbuchner, Josef; Blombach, BastianDynamic control of gene expression mainly relies on inducible systems, which require supplementation of (costly) inducer molecules. In contrast, synthetic regulatory circuits, which allow the timed shutdown of gene expression, are rarely available and therefore represent highly attractive tools for metabolic engineering. To achieve this, we utilized the VanR/PvanABK* regulatory system of Corynebacterium glutamicum, which consists of the transcriptional repressor VanR and a modified promoter of the vanABK operon (PvanABK*). VanR activity is modulated by one of the phenolic compounds ferulic acid, vanillin or vanillic acid, which are co-metabolized with d-glucose. Thus, gene expression in the presence of d-glucose is turned off if one of the effector molecules is depleted from the medium. To dynamically control the expression of the aceE gene, encoding the E1 subunit of the pyruvate dehydrogenase complex that is essential for growth on d-glucose, we replaced the native promoter by vanR/PvanABK* yielding C. glutamicum ΔPaceE::vanR-PvanABK*. The biomass yield of this strain increased linearly with the supplemented amount of effector. After consumption of the phenolic compounds growth ceased, however, C. glutamicumΔPaceE::vanR-PvanABK* continued to utilize the residual d-glucose to produce significant amounts of pyruvate, l-alanine, and l-valine. Interestingly, equimolar concentrations of the three phenolic compounds resulted in different biomass yields; and with increasing effector concentration, the product spectrum shifted from pyruvate over l-alanine to l-valine. To further test the suitability of the VanR/PvanABK* system, we overexpressed the l-valine biosynthesis genes ilvBNCE in C. glutamicum ΔPaceE::vanR-PvanABK*, which resulted in efficient l-valine production with a yield of about 0.36 mol l-valine per mol d-glucose. These results demonstrate that the VanR/PvanABK* system is a valuable tool to control gene expression in C. glutamicum in a timed manner by the cheap and abundant phenolic compounds ferulic acid, vanillin, and vanillic acid.Item Open Access Identifying and engineering bottlenecks of autotrophic isobutanol formation in recombinant C. ljungdahlii by systemic analysis(2021) Hermann, Maria; Teleki, Attila; Weitz, Sandra; Niess, Alexander; Freund, Andreas; Bengelsdorf, Frank Robert; Dürre, Peter; Takors, RalfClostridium ljungdahlii (C. ljungdahlii, CLJU) is natively endowed producing acetic acid, 2,3-butandiol, and ethanol consuming gas mixtures of CO2, CO, and H2 (syngas). Here, we present the syngas-based isobutanol formation using C. ljungdahlii harboring the recombinant amplification of the “Ehrlich” pathway that converts intracellular KIV to isobutanol. Autotrophic isobutanol production was studied analyzing two different strains in 3-L gassed and stirred bioreactors. Physiological characterization was thoroughly applied together with metabolic profiling and flux balance analysis. Thereof, KIV and pyruvate supply were identified as key “bottlenecking” precursors limiting preliminary isobutanol formation in CLJU[KAIA] to 0.02 g L-1. Additional blocking of valine synthesis in CLJU[KAIA]:ilvE increased isobutanol production by factor 6.5 finally reaching 0.13 g L-1. Future metabolic engineering should focus on debottlenecking NADPH availability, whereas NADH supply is already equilibrated in the current generation of strains.Item Open Access Anti-adhesive surfaces inspired by bee mandible surfaces(2023) Saccardi, Leonie; Schiebl, Jonas; Balluff, Franz; Christ, Ulrich; Gorb, Stanislav N.; Kovalev, Alexander; Schwarz, OliverPropolis, a naturally sticky substance used by bees to secure their hives and protect the colony from pathogens, presents a fascinating challenge. Despite its adhesive nature, honeybees adeptly handle propolis with their mandibles. Previous research has shown a combination of an anti-adhesive fluid layer and scale-like microstructures on the inner surface of bee mandibles. Our aim was to deepen our understanding of how surface energy and microstructure influence the reduction in adhesion for challenging substances like propolis. To achieve this, we devised surfaces inspired by the intricate microstructure of bee mandibles, employing diverse techniques including roughening steel surfaces, creating lacquer structures using Bénard cells, and moulding resin surfaces with hexagonal patterns. These approaches generated patterns that mimicked the bee mandible structure to varying degrees. Subsequently, we assessed the adhesion of propolis on these bioinspired structured substrates. Our findings revealed that on rough steel and resin surfaces structured with hexagonal dimples, propolis adhesion was significantly reduced by over 40% compared to unstructured control surfaces. However, in the case of the lacquer surface patterned with Bénard cells, we did not observe a significant reduction in adhesion.Item Open Access Transcriptional CDK inhibitors CYC065 and THZ1 induce apoptosis in glioma stem cells derived from recurrent GBM(2021) Juric, Viktorija; Düssmann, Heiko; Lamfers, Martine L. M.; Prehn, Jochen H. M.; Rehm, Markus; Murphy, Brona M.Glioma stem cells (GSCs) are tumour initiating cells which contribute to treatment resistance, temozolomide (TMZ) chemotherapy and radiotherapy, in glioblastoma (GBM), the most aggressive adult brain tumour. A major contributor to the uncontrolled tumour cell proliferation in GBM is the hyper activation of cyclin-dependent kinases (CDKs). Due to resistance to standard of care, GBMs relapse in almost all patients. Targeting GSCs using transcriptional CDK inhibitors, CYC065 and THZ1 is a potential novel treatment to prevent relapse of the tumour. TCGA-GBM data analysis has shown that the GSC markers, CD133 and CD44 were significantly upregulated in GBM patient tumours compared to non-tumour tissue. CD133 and CD44 stem cell markers were also expressed in gliomaspheres derived from recurrent GBM tumours. Light Sheet Florescence Microscopy (LSFM) further revealed heterogeneous expression of these GSC markers in gliomaspheres. Gliomaspheres from recurrent tumours were highly sensitive to transcriptional CDK inhibitors, CYC065 and THZ1 and underwent apoptosis while being resistant to TMZ. Apoptotic cell death in GSC subpopulations and non-stem tumour cells resulted in sphere disruption. Collectively, our study highlights the potential of these novel CKIs to induce cell death in GSCs from recurrent tumours, warranting further clinical investigation.Item Open Access Lokalisation, Speicherung und Synthese von Polyphosphat in Agrobacterium tumefaciens C58(2021) Hellenbroich, Celina; Jendrossek, Dieter (apl. Prof. Dr. rer. nat.)Polyphosphat (PolyP) besitzt eine ubiquitäre Verbreitung und erfüllt, je nach Organismus, unterschiedliche und extrem vielfältige Aufgaben. In Prokaryonten liegt PolyP in sogenannten Granula vor, während in einzelligen Eukaryonten, eine Membran das PolyP von dem Cytoplasma abtrennt. Vorangegangene Arbeiten weisen darauf hin, dass sogenannte Acidocalcisomen, eben jene membranumschlossene PolyP-Speicher aus Eukaryonten, auch in dem Bodenbakterium Agrobacterium tumefaciens vorhanden sein könnten. Die vorliegende Arbeit zeigt jedoch, dass sich in A. tumefaciens, wie in Bakterien übliche, PolyP-Granula befinden, die nicht von einer Membran umschlossen sind. Im weiteren Verlauf wurde die Synthese von PolyP sowie die Lokalisation der Polyphosphatkinasen (PPKs) und anderer aus der Literatur bekannter, PolyP-assoziierter Proteine untersucht. Die PPK1At stellte sich hierbei als PolyP-Syntheseenzym heraus. Es folgte eine biochemische Charakterisierung der PPKs in vitro, bei der für die PPK2At, neben der Bildung von NDP und NTP, eine oligophosphorylierende Funktion bis hin zu nonaphosphorylierten Nukleosiden entdeckt wurde. Außerdem stellte sich heraus, dass das PolyP-Granulum während des Zellzyklus wanderte und vielleicht durch die PPK1At mit der DNA assoziiert sein könnte. Aufgrund dieser Erkenntnisse konnte ein Modell des PolyP-Granulums und den in dieser Arbeit identifizierten, assoziierten Proteinen erstellt werden. Eine Deletion der ppk1 hatte zudem Auswirkungen auf die Zellmorphologie, die Infektionsrate von Pflanzenzellen und die Generationszeit von A. tumefaciens.Item Open Access Nano-in-micro-particles consisting of PLGA nanoparticles embedded in chitosan microparticles via spray-drying enhances their uptake in the olfactory mucosa(2021) Spindler, Lena Marie; Feuerhake, Andreas; Ladel, Simone; Günday, Cemre; Flamm, Johannes; Günday-Türeli, Nazende; Türeli, Emre; Tovar, Günter E. M.; Schindowski, Katharina; Gruber-Traub, CarmenIntranasal delivery has gained prominence since 1990, when the olfactory mucosa was recognized as the window to the brain and the central nervous system (CNS); this has enabled the direct site specific targeting of neurological diseases for the first time. Intranasal delivery is a promising route because general limitations, such as the blood-brain barrier (BBB) are circumvented. In the treatment of multiple sclerosis (MS) or Alzheimer’s disease, for example, future treatment prospects include specialized particles as delivery vehicles. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles are well known as promising delivery systems, especially in the area of nose-to-brain (N2B) delivery. Chitosan is also broadly known as a functional additive due to its ability to open tight junctions. In this study, we produced PLGA nanoparticles of different sizes and revealed for the first time their size-time-dependent uptake mechanism into the lamina propria of porcine olfactory mucosa. The intracellular uptake was observed for 80 and 175 nm within only 5 min after application to the epithelium. After 15 min, even 520 nm particles were detected, associated with nuclei. Especially the presence of only 520 nm particles in neuronal fibers is remarkable, implying transcellular and intracellular transport via the olfactory or the trigeminal nerve to the brain and the CNS. Additionally, we developed successfully specialized Nano-in-Micro particles (NiMPs) for the first time via spray drying, consisting of PLGA nanoparticles embedded into chitosan microparticles, characterized by high encapsulation efficiencies up to 51%, reproducible and uniform size distribution, as well as smooth surface. Application of NiMPs accelerated the uptake compared to purely applied PLGA nanoparticles. NiMPs were spread over the whole transverse section of the olfactory mucosa within 15 min. Faster uptake is attributed to additional paracellular transport, which was examined via tight-junction-opening. Furthermore, a separate chitosan penetration gradient of ∼150 µm caused by dissociation from PLGA nanoparticles was observed within 15 min in the lamina propria, which was demonstrated to be proportional to an immunoreactivity gradient of CD14. Due to the beneficial properties of the utilized chitosan-derivative, regarding molecular weight (150-300 kDa), degree of deacetylation (80%), and particle size (0.1-10 µm) we concluded that M2-macrophages herein initiated an anti-inflammatory reaction, which seems to already take place within 15 min following chitosan particle application. In conclusion, we demonstrated the possibility for PLGA nanoparticles, as well as for chitosan NiMPs, to take all three prominent intranasal delivery pathways to the brain and the CNS; namely transcellular, intracellular via neuronal cells, and paracellular transport.Item Open Access Studien zur biotechnologischen Anwendung und ökologischen Funktion von Pyrrolochinolinchinon(PQQ)-abhängigen Alkoholdehydrogenasen(2021) Wehrmann, Matthias; Hauer, Bernhard (Prof. Dr.)