04 Fakultät Energie-, Verfahrens- und Biotechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5

Browse

Search Results

Now showing 1 - 10 of 63
  • Thumbnail Image
    ItemOpen Access
    Fusionsforschung : eine Einführung
    (2020) Köhn-Seemann, Alf
    In diesem Vortrag wird ein Überblick und eine Einleitung in das Gebiet der Fusionsforschung gegeben.
  • Thumbnail Image
    ItemOpen Access
    Correlating and predicting thermal conductivity and self-diffusion from entropy scaling using PCP-SAFT
    (Stuttgart : Universität Stuttgart, Institut für Technische Thermodynamik und Thermische Verfahrenstechnik, 2022) Hopp, Madlen; Groß, Joachim (Prof. Dr.-Ing.)
    For a complete description and design of thermodynamic processes, knowledge of the properties of all substances involved is absolutely necessary. While the equilibrium properties are already well understood, there is still a lack of a handy description of the transport properties. Entropy scaling is an intriguingly simple approach for correlating and predicting transport properties of real substances and mixtures. As convincingly documented in the literature entropy scaling is indeed a firm concept for the shear viscosity of real substances, including hydrogen-bonding species and strongly non-spherical species and for mixtures. In this thesis, we investigate whether the entropy scaling approach is applicable for the thermal conductivity as well as the self-diffusion coefficients of pure substances. In accordance with the entropy scaling approach proposed by Y. Rosenfeld [Phys. Rev. A 1977, 15, 2545-2549], we observe that the thermal conductivity and the self-diffusion coefficient of real substances, once made dimensionless with an appropriate reference expression, only depend on residual entropy. We propose suitable reference expressions for both properties, to calculate the coefficients of pure substances from entropy scaling using the Perturbed-Chain Polar Statistical Associating Fluid Theory (PCP-SAFT) equation of state. Good entropy scaling behavior is found for the entire fluid region for water and more than 130 organic substances from various chemical families: linear and branched alkanes, alkenes, aldehydes, aromatics, ethers, esters, ketones, alcohols and acids. Models for both, thermal conductivity and self-diffusion coefficient, show satisfying robustness for extrapolating the coefficients to conditions rather distant from state points where experimental data is available. Additionally, a predictive group-contribution method for thermal conductivity based on entropy scaling is derived. The excess entropy for this approach is calculated using the group-contribution PCP-SAFT equation of state. The model is applicable for gaseous phases and for liquid-phase conditions covering wide ranges of temperature and pressure.
  • Thumbnail Image
    ItemOpen Access
    Assessing fatigue life cycles of material X10CrMoVNb9-1 through a combination of experimental and finite element analysis
    (2023) Rahim, Mohammad Ridzwan Bin Abd; Schmauder, Siegfried; Manurung, Yupiter H. P.; Binkele, Peter; Dusza, Ján; Csanádi, Tamás; Ahmad, Meor Iqram Meor; Mat, Muhd Faiz; Dogahe, Kiarash Jamali
    This paper uses a two-scale material modeling approach to investigate fatigue crack initiation and propagation of the material X10CrMoVNb9-1 (P91) under cyclic loading at room temperature. The Voronoi tessellation method was implemented to generate an artificial microstructure model at the microstructure level, and then, the finite element (FE) method was applied to identify different stress distributions. The stress distributions for multiple artificial microstructures was analyzed by using the physically based Tanaka-Mura model to estimate the number of cycles for crack initiation. Considering the prediction of macro-scale and long-term crack formation, the Paris law was utilized in this research. Experimental work on fatigue life with this material was performed, and good agreement was found with the results obtained in FE modeling. The number of cycles for fatigue crack propagation attains up to a maximum of 40% of the final fatigue lifetime with a typical value of 15% in many cases. This physically based two-scale technique significantly advances fatigue research, particularly in power plants, and paves the way for rapid and low-cost virtual material analysis and fatigue resistance analysis in the context of environmental fatigue applications.
  • Thumbnail Image
    ItemOpen Access
    PFG-NMR studies of ATP diffusion in PEG-DA hydrogels and aqueous solutions of PEG-DA polymers
    (2018) Majer, Günter; Southan, Alexander
    Adenosine triphosphate (ATP) is the major carrier of chemical energy in cells. The diffusion of ATP in hydrogels, which have a structural resemblance to the natural extracellular matrix, is therefore of great importance to understand many biological processes. In continuation of our recent studies of ATP diffusion in poly(ethylene glycol) diacrylate (PEG-DA) hydrogels by pulsed field gradient nuclear magnetic resonance (PFG-NMR), we present precise diffusion measurements of ATP in aqueous solutions of PEG-DA polymers, which are not cross-linked to a three-dimensional network. The dependence of the ATP diffusion on the polymer volume fraction in the hydrogels, φ, was found to be consistent with the predictions of a modified obstruction model or the free volume theory in combination with the sieving behavior of the polymer chains. The present measurements of ATP diffusion in aqueous solutions of the polymers revealed that the diffusion coefficient is determined by φ only, regardless of whether the polymers are cross-linked or not. These results seem to be inconsistent with the free volume model, according to which voids are formed by a statistical redistribution of surrounding molecules, which is expected to occur more frequently in the case of not cross-linked polymers. The present results indicate that ATP diffusion takes place only in the aqueous regions of the systems, with the volume fraction of the polymers, including a solvating water layer, being blocked for the ATP molecules. The solvating water layer increases the effective volume of the polymers by 66%. This modified obstruction model is most appropriate to correctly describe the ATP diffusion in PEG-DA hydrogels.
  • Thumbnail Image
    ItemOpen Access
    Simulation of Electron Bernstein Waves in FLiPS with various numerical methods
    (2021) Rumiantsev, Kirill; Hirth, Thomas (Prof. Dr.)
    The plasma generation and heating by microwaves is an important research topic in the field of controlled nuclear fusion. All modern fusion plasma devices such as Wendelstein 7-X use microwave heating. The microwave plasma-heating primarily occurs at the resonances, where the microwaves are efficiently absorbed. The heating scenario must be designed such that the microwaves can reach the resonance. When the plasma exceeds the cutoff density, the microwaves will be reflected, and the resonance becomes inaccessible. However, it is possible to perform heating by Electron Bernstein Waves (EBWs), since these electrostatic waves propagate even in overdense plasmas, unlike the electromagnetic plasma waves. EBWs cannot propagate in the vacuum and must be created through a coupling process. Both O- and X-mode can couple to EBWs. The thesis investigates the coupling of the O- and X-mode to EBWs as well as the EBW propagation with various numerical methods. The application of only one numerical method is not sufficient as the coupling involves very different wavelength scales. The optimal coupling scheme for the expected plasma parameters was determined using a Finite-Difference Time-Domain (FDTD) code. Since EBWs are not included in the code, a Boundary-Value Problem (BVP) code was developed. Using the BVP code, the effect of the collisions on EBWs was studied. The field amplification at the upper-hybrid resonance (UHR), where EBWs couple to the electromagnetic waves, and the effect of the magnetic field on EBWs could be directly visualized. The propagation of the EBW was investigated using the novel ray-tracing code RiP. The ray-tracing simulations provided a clear picture of the essential features of the wave propagation. For the O- and X-mode coupling, the importance of the axial plasma inhomogeneity was shown. For the first time, the method of the Wigner function was applied to calculate the intensity distribution of EBWs. Both, ray-tracing and the Wigner function simulations showed that the inhomogeneous magnetic can cause focusing of EBWs. The focusing effect can have practical applications e.g. for controlled local heating of the plasma. Additionally, the focusing effect can cause a parametric decay due to the field enhancement in the focal regions. In this thesis, the simulations were focused on excitation and propagation of EBWs in the geometry of the linear plasma device FLiPS located at the University of Stuttgart. Measurements were carried out to study the predicted focusing of the EBWs in the FLiPS plasma with monopole antennas. The measurements provided the density profile used in the simulations. The expected amplification of the signal at the UHR was not detected, indicating either the complete collisional absorption of the X-mode at the upper-hybrid resonance, or the turbulent plasma density oscillations that reduce the coupling efficiency to EBWs. These effects can be studied further using the developed tools since they provide a complete toolbox to study the full coupling process to EBWs in an actual experimental geometry.
  • Thumbnail Image
    ItemOpen Access
    Simulation of microwave beams with PROFUSION
    (2019) Plaum, Burkhard
  • Thumbnail Image
    ItemOpen Access
    Influence of the ion energy on generation and properties of thin barrier layers deposited in a microwave plasma process
    (2012) Ramisch, Evelyn Christine; Stroth, Ulrich (Prof. Dr.)
    The demand for environment-friendly energy sources increases more and more, which is not only caused by the energy turnaround initialized by the Federal Government. In this context, the focus is set mainly on the development of wind power and solar energy with competitive production costs. Above all, this is a problem for solar cells, which, today, are mainly fabricated out of crystalline silicon and, therefore, are in competition with semiconductor industry. Hence, the development of solar cells based on alternative materials like e.g. copper-indium-gallium-diselenide (CIGS) is of great interest. Because of the lower layer thickness needed for this material, these solar cells can be fabricated on flexible substrates like metal foils. This possibility offers a broader spectrum of applications. For reaching low production costs, the applicability of unpolished steel foil, which exhibits scratches on the µm scale, is investigated as substrate for the solar cells in this work. The use of any metal as substrate requires a barrier layer between the substrate and the solar cells to prevent short-circuits between the separate cells of a solar module and to prevent the diffusion of undesired substrate elements into the solar cells. In this work, siliconoxide and silicon-nitride coatings are deposited as barrier layers in a microwaveplasma process in a gas mixture of HMDSO (hexamethyldisiloxane) and oxygen or monosilane and ammonia. To have the opportunity of influencing the layer growth by high-energetic ions, an additional substrate bias is applied during the deposition, which leads to a capacitive discharge superimposing the microwave one. The high-energetic ions impinging on the layer surface lead to a layer smoothing and melting, especially at positions of indentations in the substrate surface. Hence, the barrier properties of the coating are improved clearly, which was identified by insulation measurements of the deposited film. The layer growth modification is analyzed on the basis of substrates with a well-defined rough surface structure in the µm range experimentally as well as by simulations with the Monte-Carlo Code SDTrimSP-2D, which allows a detailed analysis of the local layer growth mechanisms contributing to the deposition. Additionally, the impinge of the energetic ions affects the molecular structure and composition of the coatings as well. These parameters are an important indicator for the layer material properties like adhesion, hardness and diffusion properties. The molecular composition of the deposited layers is analyzed in detail by Fourier- ransform infrared (FTIR) spectroscopy. From the layer composition and their refractive index, conclusions on the diffusion behavior of the coatings are drawn. In case of applying the substrate bias, the spectra indicate a denser and harder film in case of silicon oxide. Hence, these layers are more diffusion preventing compared to the unbiased ones. On the other hand, the silicon-nitride coatings show contrary properties: They offer more porous layers, when the substrate bias is applied, and, therefore, they assist diffusion.
  • Thumbnail Image
    ItemOpen Access
    Modeling and simulation of closed low-pressure adsorbers for thermal energy storage
    (2019) Schäfer, Micha; Thess, André (Prof. Dr. rer. nat.)
    Closed low-pressure adsorption systems can be applied for thermal energy storage. Their performance is determined by the mass and heat transport processes in the adsorber. Therefore, thorough knowledge of these transport processes is required for further storage development. The present thesis contributes to this by providing detailed models of closed low-pressure adsorbers and by conducting simulations over a broad range of parameters and configurations. The focus is on adsorbers of larger scale (length L = 0.1 . . . 1 m) and on the discharging process. As the adsorption pair, binderless zeolite 13X with water is examined. The models are developed in a stepwise manner from pore to storage scale. The Finite-Difference-Method is implemented to numerically solve the models. Simulations are conducted for defined reference cases as well as over a broad range of geometric and process parameters. The reference cases are analyzed in detail to gain a better understanding of the transport processes. Furthermore, the results are analyzed with respect to two particular modeling aspects: equilibrium assumptions and rarefaction effects (e. g. slip effect). With respect to the application, the discharging performance is analyzed in terms of thermal power and a defined discharging degree. Both the adsorber and the adsorbent configurations are varied. In addition, the effect of the discharging conditions is evaluated. Finally, one exemplary charging process is examined. The detailed analysis of the reference cases reveals that the mass and heat transport and the adsorption processes are strongly coupled and can only be understood in their interaction. For onedimensional adsorber configurations, that is the mass and heat transport are in the same direction, the discharging process is generally limited by the heat transport. This leads to insufficient thermal power and unsuitable discharging durations of up to one year. In contrast, for two-dimensional adsorber configurations, that is the mass and heat transport are in perpendicular directions, the discharging process can be limited either by the mass or heat transport or by the adsorption. The limitation depends on the configuration of the adsorber and adsorbent. Moreover, the twodimensional adsorber configurations can provide sufficient thermal power. With respect to the modeling, it is found that the assumption of a uniform pressure distribution is applicable for one-dimensional adsorber configurations. In contrast, for two-dimensional configurations, no equilibrium assumptions can be applied in general. However, for powder adsorbent it is always valid to assume local adsorption equilibrium. Regarding the rarefaction effects in twodimensional adsorber configurations with honeycombs and granules, the slip effect is relevant for small channel and particle diameters (d = 1 mm). For adsorbers with powder adsorbent, the reduction of the effective heat conductivity due to the rarefaction effect becomes relevant. With respect to the application, the variation of the adsorber configuration shows that the volumetric thermal power generally decreases with increasing adsorber length. Furthermore, the power decreases with increasing width between the parallel heat exchanger plates in the adsorber. Regarding the adsorbent configuration in two-dimensional adsorber configurations, it is found that the volumetric thermal power can be optimized by variation of the channel or particle diameter. Interestingly, the optima for peak and mean power do not coincide. In addition, the discharging degree is found to strongly depend on the discharging conditions in terms of discharging temperature and volume flow of the heat transfer fluid extracting the heat from the adsorber. In general, the discharging degree decreases with increasing discharging temperature. Similarly, the discharging degree decreases with increasing volume flow of the heat transfer fluid. Finally, the analysis of an exemplary charging process revealed that the pressure in the adsorber can increase significantly (> 50%) due to the desorption.
  • Thumbnail Image
    ItemOpen Access
    Particle dynamics simulation and diagnostics of the PECVD processes in fluorocarbon rf discharges
    (2010) Barz, Jakob Philipp; Lunk, Achim (Prof. Dr. rer. nat. habil.)
    The present work deals with the investigation of fluorocarbon plasmas by different experimental methods and supporting numerical analysis of the plasma with an emphasis on plasma-chemical interactions. Several insights could be gained from the combined experimental and numerical approaches, especially concerning the conclusiveness of the results and previous observations from the literature. Plasma diagnostics were performed with non-invasive methods, such as UI probe measurements, microwave interferometry, laser-induced fluorescence, UV absorption measurements, and mass spectrometry. The complementary numerical simulations accounted for the electron-neutral interactions, discharge dynamics, and chemical reactions. From the excitation and ionization cross sections of argon as well as the dissociation, ionization, and attachment cross sections of trifluoromethane, the field-dependence of transport parameters were obtained. These transport parameters were used as input data for fluid-modeling of the discharge. For the plasma dynamics simulation, the Boltzmann-equation was solved numerically for transport of mass, momentum, and energy in a time-dependent two-term approach. The so-obtained electron density and the power-voltage characteristics were compared to measurements with microwave interferometry and the UI probe, respectively. An overall good agreement of the numerical and measured electron densities was obtained over a large variation range of plasma power, gas composition, and pressure. The power-voltage characteristics showed a good agreement between numerical results and data obtained right after ignition of plasma. It was further found that the measured data showed time-dependent developments from which strong deviations resulted. The time scales of changes were typically in the range of milliseconds to seconds after ignition. It was concluded that compositional changes in the gas phase were the reason. The high abundance of oligomers as well as small molecules like HF in the gas phase on one hand, and the loss of molecules by polymer deposition on the other hand affect the charge carrier mobilities and the ionic composition, such result in the changes observed. Furthermore, from this investigation, the major fragmentation processes were identified. For the investigation of the reaction-diffusion processes, investigations by laser-induced fluorescence were carried out. In order to obtain best resolution along the axial direction of the plasma reactor, the conventional crossed-beam technique was modified. Such, a resolution of up to 60 micrometers became possible. Thus, highly-resolved axial densities of two plasma abundant intermediates, fluoromethylidine and difluorocarbene, were obtained. For the analysis of the gas phase kinetics, a numerical chemical-diffusion model was set up. To complete the analysis of the plasma dynamics, the deposition of plasma polymer onto substrates was examined. The deposition rate was determined, and changes in the surface chemistry at the transition form uncovered substrates to closed films were revealed. For the identification of the deposition precursors, results from the chemical-diffusion model were adopted for the analysis. The oligomer molecules, which are produced at high results according to the simulation, were shown to correlate well with the polymer deposition rate. It was found by electron spin resonance (ESR) that chemical reactions took place within the deposited polymer films. The restructuring of the polymer by these reactions resulted in highly cross-linked films according to x-ray photoelectron spectroscopy (XPS). Further, it was found that the amount of fluorine in the polymer was lower than could be expected from the oligomers formed according to the chemical model. Such, it was suggested that ejection of fluorine containing species was taking place especially during the plasma glow, promoted by electron and ion bombardment, and radiation. Moreover, the ejection of fluorine containing species was tentatively ascribed to the production of difluorocarbene at the surface of the plasma chamber as observed by LIF. Concluding, radical and metastable fluxes from the electrodes, combined with isotropic gas phase reactions, determine the density profiles of several species from trifluoromethane plasmas. They strongly feed back the plasma chemistry, which itself feeds back the plasma particle dynamics. According to models, the deposition occurs via formation of oligomers in the gas phase, which deposit on the surface either as neutrals or ions, and become crosslinked by subsequent reactions. The origin of the particle fluxes at the electrodes is not yet identified, but indications were found for the chemical cross-linking processes being the cause.
  • Thumbnail Image
    ItemOpen Access
    The natural breakup length of a steady capillary jet : application to serial femtosecond crystallography
    (2021) Gañán-Calvo, Alfonso M.; Chapman, Henry N.; Heymann, Michael; Wiedorn, Max O.; Knoska, Juraj; Gañán-Riesco, Braulio; López-Herrera, José M.; Cruz-Mazo, Francisco; Herrada, Miguel A.; Montanero, José M.; Bajt, Saša
    One of the most successful ways to introduce samples in Serial Femtosecond Crystallography has been the use of microscopic capillary liquid jets produced by gas flow focusing, whose length-to-diameter ratio and velocity are essential to fulfill the requirements of the high pulse rates of current XFELs. In this work, we demonstrate the validity of a classical scaling law with two universal constants to calculate that length as a function of the liquid properties and operating conditions. These constants are determined by fitting the scaling law to a large set of experimental and numerical measurements, including previously published data. Both the experimental and numerical jet lengths conform remarkably well to the proposed scaling law. We show that, while a capillary jet is a globally unstable system to linear perturbations above a critical length, its actual and shorter long-term average intact length is determined by the nonlinear perturbations coming from the jet breakup itself. Therefore, this length is determined solely by the properties of the liquid, the average velocity of the liquid and the flow rate expelled. This confirms the very early observations from Smith and Moss 1917, Proc R Soc Lond A Math Phys Eng, 93, 373, to McCarthy and Molloy 1974, Chem Eng J, 7, 1, among others, while it contrasts with the classical conception of temporal stability that attributes the natural breakup length to the jet birth conditions in the ejector or small interactions with the environment.