04 Fakultät Energie-, Verfahrens- und Biotechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/5

Browse

Search Results

Now showing 1 - 10 of 106
  • Thumbnail Image
    ItemOpen Access
    Precision 3D‐printed cell scaffolds mimicking native tissue composition and mechanics
    (2020) Erben, Amelie; Hörning, Marcel; Hartmann, Bastian; Becke, Tanja; Eisler, Stephan A.; Southan, Alexander; Cranz, Séverine; Hayden, Oliver; Kneidinger, Nikolaus; Königshoff, Melanie; Lindner, Michael; Tovar, Günter E. M.; Burgstaller, Gerald; Clausen‐Schaumann, Hauke; Sudhop, Stefanie; Heymann, Michael
    Cellular dynamics are modeled by the 3D architecture and mechanics of the extracellular matrix (ECM) and vice versa. These bidirectional cell‐ECM interactions are the basis for all vital tissues, many of which have been investigated in 2D environments over the last decades. Experimental approaches to mimic in vivo cell niches in 3D with the highest biological conformity and resolution can enable new insights into these cell‐ECM interactions including proliferation, differentiation, migration, and invasion assays. Here, two‐photon stereolithography is adopted to print up to mm‐sized high‐precision 3D cell scaffolds at micrometer resolution with defined mechanical properties from protein‐based resins, such as bovine serum albumin or gelatin methacryloyl. By modifying the manufacturing process including two‐pass printing or post‐print crosslinking, high precision scaffolds with varying Young's moduli ranging from 7‐300 kPa are printed and quantified through atomic force microscopy. The impact of varying scaffold topographies on the dynamics of colonizing cells is observed using mouse myoblast cells and a 3D‐lung microtissue replica colonized with primary human lung fibroblast. This approach will allow for a systematic investigation of single‐cell and tissue dynamics in response to defined mechanical and bio‐molecular cues and is ultimately scalable to full organs.
  • Thumbnail Image
    ItemOpen Access
    Identifying and engineering bottlenecks of autotrophic isobutanol formation in recombinant C. ljungdahlii by systemic analysis
    (2021) Hermann, Maria; Teleki, Attila; Weitz, Sandra; Niess, Alexander; Freund, Andreas; Bengelsdorf, Frank Robert; Dürre, Peter; Takors, Ralf
    Clostridium ljungdahlii (C. ljungdahlii, CLJU) is natively endowed producing acetic acid, 2,3-butandiol, and ethanol consuming gas mixtures of CO2, CO, and H2 (syngas). Here, we present the syngas-based isobutanol formation using C. ljungdahlii harboring the recombinant amplification of the “Ehrlich” pathway that converts intracellular KIV to isobutanol. Autotrophic isobutanol production was studied analyzing two different strains in 3-L gassed and stirred bioreactors. Physiological characterization was thoroughly applied together with metabolic profiling and flux balance analysis. Thereof, KIV and pyruvate supply were identified as key “bottlenecking” precursors limiting preliminary isobutanol formation in CLJU[KAIA] to 0.02 g L-1. Additional blocking of valine synthesis in CLJU[KAIA]:ilvE increased isobutanol production by factor 6.5 finally reaching 0.13 g L-1. Future metabolic engineering should focus on debottlenecking NADPH availability, whereas NADH supply is already equilibrated in the current generation of strains.
  • Thumbnail Image
    ItemOpen Access
    Physical interactions strengthen chemical gelatin methacryloyl gels
    (2019) Rebers, Lisa; Granse, Tobias; Tovar, Günter E. M.; Southan, Alexander; Borchers, Kirsten
    Chemically cross-linkable gelatin methacryloyl (GM) derivatives are getting increasing attention regarding biomedical applications. Thus, thorough investigations are needed to achieve full understanding and control of the physico-chemical behavior of these promising biomaterials. We previously introduced gelatin methacryloyl acetyl (GMA) derivatives, which can be used to control physical network formation (solution viscosity, sol-gel transition) independently from chemical cross-linking by variation of the methacryloyl-to-acetyl ratio. It is known that temperature dependent physical network formation significantly influences the mechanical properties of chemically cross-linked GM hydrogels. We investigated the temperature sensitivity of GM derivatives with different degrees of modification (GM2, GM10), or similar degrees of modification but different methacryloyl contents (GM10, GM2A8). Rheological analysis showed that the low modified GM2 forms strong physical gels upon cooling while GM10 and GM2A8 form soft or no gels. Yet, compression testing revealed that all photo cross-linked GM(A) hydrogels were stronger if cooling was applied during hydrogel preparation. We suggest that the hydrophobic methacryloyl and acetyl residues disturb triple helix formation with increasing degree of modification, but additionally form hydrophobic structures, which facilitate chemical cross-linking.
  • Thumbnail Image
    ItemOpen Access
    Microbial aldolases as C-C bonding enzymes : investigation of structural-functional characteristics and application for streoselective reactions
    (2006) Inoue, Tomoyuki; Sprenger, Georg (Prof. Dr.)
    Carbon-carbon bonding enzymes can be attractive alternatives to standard chemical methods by allowing chiral control, taking advantage of mild reaction conditions and minimizing the use of protecting groups in reactions. Fructose-6-phosphate aldolase (FSA) from Escherichia coli catalyses reversibly the cleavage of D-fructose-6-phosphate into dihydroxyacetone (DHA) and D-glyceraldehyde-3-phosphate (GAP). In addition, the enzyme creates new building blocks with 3S, 4R configuration by use of DHA as donor and various aldehydes as acceptor. The goal of this work was to investigate FSA and compare it with the transaldolase from Bacillus subtilis (TALBsu) which is similar both in sequence and structure to FSA (30% identical in amino acid residues). This should help to elucidate relationships between structure and function of both enzymes, and possible applications for FSA and TALBsu for the production of valuable sugars or sugar derivatives. Both fsa and talBsu genes were cloned with Histidine tags (6x or 10x His-tag) at the N- or C-termini to facilitate purification of the proteins. However, none of these fusion proteins (N-tagged FSA, C-tagged FSA, N-tagged TALBsu, C-tagged TALBsu) retained the complete enzyme activity. Both N-tagged FSA and TALBsu did not bind to Ni-NTA column, whereas both C-tagged enzymes bound to the resin and they could be purified. Concerning quaternary structures, N- or C-tagged TALBsu formed dimer or pentamer, while both His-tagged FSAs kept the decamer structures. This result demonstrated that His-tag would give negative influences on both FSA and TALBsu, and it was unsuitable for assay of those enzymes. In addition, FSA had different structural stability from that of TALBsu. To examine the importance of several residues at the active center in FSA, three FSA mutants (Q59E, Y131A and Y131F) were prepared so as to have the corresponding amino acid residues that are present in TALBsu and several other TALs (Gln -> Glu, Tyr -> Phe). The purified FSA Q59E protein retained approximately 66% of the wild type (WT) activity, whereas both Y131A and Y131F were completely inactive, though all three retained their decameric structures. From three-dimensional structural analysis of FSA Q59E (by the group of G. Schneider at Karolinska Institute, Stockholm), it appeared that the mutant protein's structure is identical to WT. Each mutant lost stability at high temperature and was thus denatured by heat treatment (75°C, 40min). This suggested that the Tyr131 residue has an important role for FSA activity. Indeed, a hydroxyl group at the phenyl moiety of the residue appears to be indispensable for the catalytic reaction, as the structural balance of FSA was lost by the alteration of Tyr131. Another mutant of FSA, A129S, was assayed for its synthetic capability and compared with FSA WT. Both WT and A129S catalyzed two reactions using DHA as donor with formaldehyde or glycolaldehyde as acceptor and produced S-erythrulose or D-xylulose, respectively. However, A129S showed much higher activity thus yielding larger amounts of products. On the other hand, almost no difference was observed in catalytic ability between WT and A129S for a reaction using hydroxyacetone as donor. It is supposed that a hydroxyl moiety of DHA interacts with the hydroxyl group of Ser129 in FSA A129S via a hydrogen bond and changes the affinity of the enzyme towards DHA. As further synthetic reactions, aminoaldehydes were assayed as acceptors for FSA. FSA recognized N-Cbz-3-aminopropanal with DHA and an aldol adduct (a precursor of fagomine) was produced even at 4 °C (performed by the group of P. Clapes in CSIC, Barcelona). This indicates a high utility of FSA in organic syntheses, the enzyme indeed could recognize large molecules including a benzene ring as acceptor and retains catalytic ability at rather low temperature. To evolve diverse catalytic abilities of FSA and progress further application of the enzyme, random mutagenesis was adopted by use of error prone PCR technique. As a result, various mutant proteins were acquired with the alteration of 1 to 6 residues per gene. This implies that FSA mutants can be prepared with this technique and enzyme libraries could be created. To compare FSA with TALBsu in structure, wild-type TALBsu was cloned in E. coli and purified. Three-dimensional structure analysis (by T. Sandalova in the group of G. Schneider in Karolinska Institute, Stockholm) revealed that the enzyme is a decameric protein (10 subunits of 23kDa) resulting from the dimerization of two identical pentamers. This makes TALBsu highly similar to FSA in structure with the exception only of a shorter C-terminal helix. TALBsu was tolerant of high temperature as FSA (at 75°C for 30-40min), and recognized different aldehydes or their phosphate derivatives as acceptors (Fru6P as donor). DHA was utilized as donor at a specific activity of about 10% of a reaction using Fru6P. Eight chimera proteins (chimera1-8) consisting of parts of FSA and progressively truncated TALBsu were designed and overexpressed in E. coli to probe structural determinants for each enzyme. However, several chimera samples (chimera1, 3, 6) showed only faint protein bands on SDS-PAGE and two (chimera2, 7) were not detected. All cell-free extracts of chimera proteins showed neither FSA nor TALBsu activity.
  • Thumbnail Image
    ItemOpen Access
    Application of ion chromatography for the reliable quantification of ammonium in electrochemical ammonia synthesis experiments : a practical guide
    (2023) Bragulla, Sebastian C. H.; Lorenz, Julian; Harms, Corinna; Wark, Michael; Friedrich, K. Andreas
    Assessing novel electrocatalysts for the electrochemical ammonia synthesis (EAS) requires reliable quantitative trace analysis of electrochemically produced ammonia to infer activity and selectivity. This study concerns the development of an ion chromatography (IC) method for quantitative trace analysis of ammonium in 0.1 M sulfuric acid electrolyte, which is applied to EAS gas-diffusion electrode (GDE) experiments with commercial chromium nitride as electrocatalyst. The developed IC method is highly sensitive, versatile, and reliable, achieving a limit of quantification (LOQ) of 6 μg l-1 (6 ppbmol) ammonium. The impacts of the sample matrix, dilution, and neutralization, as well as contamination, on the quantitative analysis by IC are analyzed. Experimental constraints result in an effective LOQ including dilution of 60 μg l-1 for the determination of ammonium in 0.1 M sulfuric acid electrolyte, owing to necessary sample dilution. The practical guide presented herein is intended to be very relevant for the field of EAS as a guideline and applicable to a broad range of catalyst systems and ion chromatography devices.
  • Thumbnail Image
    ItemOpen Access
    Acid catalyzed cross‐linking of polyvinyl alcohol for humidifier membranes
    (2021) Michele, Andre; Paschkowski, Patrick; Hänel, Christopher; Tovar, Günter E. M.; Schiestel, Thomas; Southan, Alexander
    Polyvinyl alcohol (PVA) is a hydrophilic polymer well known for good film forming properties, high water vapor permeance JW, and low nitrogen permeance. However, depending on molar mass and temperature, PVA swells strongly in water until complete dissolution. This behavior affects the usability of PVA in aqueous environments and makes cross‐linking necessary if higher structural integrity is envisaged. In this work, PVA networks are formed by thermal cross‐linking in the presence of p‐toluenesulfonic acid (TSA) and investigated in a design of experiments approach. Experimental parameters are the cross‐linking period tc, temperature ϑ and the TSA mass fraction wTSA. Cross‐linking is found to proceed via ether bond formation at all reaction conditions. Degradation is promoted especially by a combination of high wTSA, tc and ϑ. Thermal stability of the networks after preparation is strongly improved by neutralizing residual TSA. Humidification membranes with a JW of 6423 ± 63.0 gas permeation units (GPU) are fabricated by coating PVA on polyvinyliden fluoride hollow fibers and cross‐linking with TSA. Summarizing, the present study contributes to a clearer insight into the cross‐linking of PVA in presence of TSA, the thermal stability of the resulting networks and the applicability as selective membrane layers for water vapor transfer.
  • Thumbnail Image
    ItemOpen Access
    Multistep reactions of molten nitrate salts and gas atmospheres
    (2024) Steinbrecher, Julian; Thess, André (Prof. Dr.)
    Dissertation zur Untersuchung der Stabilität von Nitratsalzschmelzen unter verschiedenen atmosphärischen Bedingungen und Temperaturen.
  • Thumbnail Image
    ItemOpen Access
    Flux calculation for primary metabolism reveals changes in allocation of nitrogen to different amino acid families when photorespiratory activity changes
    (2024) Friedrichs, Nils; Shokouhi, Danial; Heyer, Arnd G.
    Photorespiration, caused by oxygenation of the enzyme Rubisco, is considered a wasteful process, because it reduces photosynthetic carbon gain, but it also supplies amino acids and is involved in amelioration of stress. Here, we show that a sudden increase in photorespiratory activity not only reduced carbon acquisition and production of sugars and starch, but also affected diurnal dynamics of amino acids not obviously involved in the process. Flux calculations based on diurnal metabolite profiles suggest that export of proline from leaves increases, while aspartate family members accumulate. An immense increase is observed for turnover in the cyclic reaction of glutamine synthetase/glutamine-oxoglutarate aminotransferase (GS/GOGAT), probably because of increased production of ammonium in photorespiration. The hpr1-1 mutant, defective in peroxisomal hydroxypyruvate reductase, shows substantial alterations in flux, leading to a shift from the oxoglutarate to the aspartate family of amino acids. This is coupled to a massive export of asparagine, which may serve in exchange for serine between shoot and root.
  • Thumbnail Image
    ItemOpen Access
    Enzymatische und chemische Studien zur Veresterung und Löslichkeit von Cellulose in ionischen Flüssigkeiten
    (2017) Hinner, Lars Pieter; Hauer, Bernhard (Prof. Dr.)
    Cellulose ist der Hauptbestandteil der pflanzlichen Zellwand und daher die häufigste organische Verbindung auf unserem Planeten. Dieses nachwachsende Biopolymer wird heutzutage hauptsächlich für die Produktion von Papier und Zellstoff verwendet oder verbrannt und somit als billiger Energieträger genutzt. Viele alternative Anwendungsgebiete sind aufgrund von unzureichenden Materialeigenschaften schwierig zu realisieren. Insbesondere thermoplastische Anwendungen sind nicht durchführbar, da Cellulose keinen Schmelzpunkt besitzt. Auch die chemische Modifikation der Cellulose - mit dem Ziel, andere Materialeigenschaften zu generieren - ist schwierig, da Cellulose nicht in Wasser oder in üblichen organischen Lösungsmitteln gelöst werden kann. Bis dato wurden daher industriell heterogene Synthesen entwickelt, um Cellulose im nicht gelösten Zustand zu modifizieren. Hierbei sind allerdings aufwendige mechanische und chemische Vorbehandlungen notwendig, um eine effiziente Verarbeitung bzw. Modifizierung der Cellulose zu gewährleisten. Zusätzlich sind heterogene Synthesen zur Produktion von Celluloseestern, aufgrund der starken sterischen Hinderung der nicht gelösten Cellulose, auf kurzkettige Acyldonoren (C2-C4) beschränkt. Somit ist es mit heterogenen Prozessen nicht möglich, das komplette Spektrum an potenziellen Celluloseestern zu erzeugen. Es gibt allerdings ein steigendes Interesse an neuartigen Celluloseestern, da beispielsweise Celluloseacetat nur eine schlechte thermoplastische Prozessierbarkeit aufweist. Die Herstellung von neuartigen Celluloseestern kann in homogenen Synthesen besser realisiert werden, in denen Cellulose vollständig gelöst vorliegt. Als Reaktionsmedium können unter anderem spezielle ionische Flüssigkeiten genutzt werden, welche in der Lage sind, Cellulose zu lösen. In diesem Kontext wurden verschiedene Synthesen entwickelt, welche reaktive Acyldonoren verwenden. Der Einsatz von derartigen Acyldonoren, wie beispielsweise Carbonsäurechloriden ist allerdings problematisch, da diese sowohl das Cellulosegrundgerüst, als auch die ionische Flüssigkeit zersetzen können. Daher erscheint eine homogene enzymatische Synthese von Celluloseestern als interessante Alternative, da durch die Verwendung von enzymatischen Katalysatoren weniger reaktive Acyldonoren, wie beispielsweise Ester, genutzt werden können. Angesichts der Herausforderung, unter moderaten Bedingungen zu katalysieren, lag ein Fokus der hier vorgelegten Arbeit in der Entwicklung einer enzymatischen Synthese von Celluloseestern mit langen Seitenketten. Da die Analytik von niedrig substituierten Celluloseestern schwierig ist, wurden zunächst leichter zu analysierende Modellreaktionen untersucht. Einfache Veresterungs- und Umesterungsreaktionen können in Cellulose-lösenden ionischen Flüssigkeiten erfolgreich enzymatisch katalysiert werden. Die enzymatische Synthese von Glucoseestern war jedoch nur in ionischen Flüssigkeiten erfolgreich, welche Cellulose nicht lösen. Als möglicher Grund hierfür wird eine mangelnde Interaktion zwischen Enzym und Glucose in diesen polaren ionischen Flüssigkeiten postuliert. Um die Interaktion zwischen Enzym und Glucose zu steigern, wurde die Glucosekonzentration erhöht, was allerdings zu keiner erfolgreichen Synthese von Glucoselaurat führte, da die große Viskosität von hoch konzentrierten Zuckerlösungen den Massentransfer und damit die Reaktion zusätzlich inhibiert. Eine Steigerung der Interaktionswahrscheinlichkeit zwischen Enzym und Glucose durch die Erhöhung der Glucosekonzentration ist allerdings in dem ebenfalls polaren Lösungsmittel Dimethylsulfoxid (DMSO) erfolgreich und erzeugt ab einer Glucosekonzentration von 60 % w/v signifikante Mengen an Glucoselaurat. Um sich in einem nächsten Schritt an den polymeren Charakter der Cellulose weiter anzunähern, wurde die enzymatische Veresterung des Dimers der Cellulose, d.h. der Cellobiose, als weitere Modellreaktion untersucht. Hierbei katalysiert das Enzym Candida antarctica Lipase B (CAL-B) die Synthese von nur sehr geringen Mengen an Cellobioseestern, wobei andere, ebenfalls aus Glucose aufgebaute Disaccharide wie Maltose und Trehalose, deutlich besser umgesetzt werden. Neunzehn verschiedene Enzympräparationen wurden auf die Fähigkeit untersucht, Cellobioselaurat zu synthetisieren. Den höchsten Umsatz katalysiert die Schweineleberesterase (PLE), jedoch zeigte dieses Enzym keine Aktivität gegenüber Cellulose als Ausgangssubstrat. Neben der enzymatischen Katalyse wurde eine chemische Synthese, basierend auf Vinylestern, entwickelt. Diese Vinylester-basierte Synthese ermöglicht erstmals die Acylierung von Cellulose mit Vinylestern in der biologisch abbaubaren ionischen Flüssigkeit 1-Ethyl-3-methylimidazoliumacetat ([EMIM]OAc). Die Reaktion läuft in Abwesenheit von zusätzlichen Katalysatoren ab und erlaubt die Synthese von Glucoseestern und Celluloseestern mit unterschiedlich langen Seitenketten. Es war möglich, Celluloseester mit Substitutionsgraden von 0,24 bis 3,00 zu erzeugen. Um die Reaktion zu charakterisieren, wurden verschiedene Reaktionsparameter wie Reaktionszeit, Temperatur und die Menge an Acyldonor systematisch variiert und mittels 1H-NMR, FT-IR und HPLC-GPC analysiert. Der höchste Veresterungsgrad ergibt sich bei einer Synthese-temperatur von 80°C und einer Reaktionszeit von zwei Stunden. Um die Synthese mit anderen Reaktionen aus der Literatur zu vergleichen, wurde eine Fettsäurechlorid-basierte Synthese von Barthel und Heinze in der ionischen Flüssigkeit 1-Butyl-3-methylimidazoliumchlorid ([BMIM]Cl) reproduziert. Beide Reaktionen zeigen vergleichbare Substitutionsgrade (DS), jedoch ist der Polymerisationsgrad (DP) von Celluloselaurat nach der Fettsäurechlorid-basierten Synthese erheblich reduziert, während die Vinylester-basierte Synthese deutlich schonender ist und die Produktion von signifikant größeren Celluloseestern erlaubt. Bei der Vinylester-basierten Synthese in [EMIM]OAc wurde eine zusätzliche Acetylierung der Cellulose als unerwünschte Nebenreaktion identifiziert. Der Acetylierungsgrad steigt mit abnehmender Polarität und steigender sterischer Hinderung der eingesetzten Vinylester. Allgemein ist der Acetylierungsgrad nach der Vinylester-basierten Synthese in [EMIM]OAc allerdings deutlich niedriger als bei bereits beschriebenen Synthesen in [EMIM]OAc, welche Anhydride oder Fettsäurechloride als Acyldonoren nutzen. Das Produktspektrum der Vinylester-basierten Synthese konnte durch Verwendung zusätzlicher Acyldonoren wie Benzoesäurevinylester, Pivalinsäurevinylester, Neodecansäurevinylester und 2-Ethylhexansäurevinylester erfolgreich erweitert werden. Des Weiteren wurden die thermoplastischen und rheologischen Eigenschaften der Celluloseester im Rahmen einer Kooperation mit Linda Göbel vom Institut für Kunststofftechnik untersucht, wobei die thermoplastische Verarbeitbarkeit prinzipiell bestätigt wer-den konnte. Es wurde außerdem ein Upscaling der Synthese mit anschließendem Recycling der ionischen Flüssigkeit durchgeführt. Das Upscaling wurde in einem Laborreaktor mit 2,5 kg ionischer Flüssigkeit durchgeführt, wobei 233,25 g Celluloselaurat mit einem Substitutionsgrad von 2,3 synthetisiert werden konnte. Die ionische Flüssigkeit wurde mit einer durchschnittlichen Effizienz von 91 % w/w recycelt und konnte in einer nach-folgenden Synthese als Lösungsmittel eingesetzt werden. Insgesamt wurden drei Synthese-Recyclingzyklen durchgeführt, wobei der Substitutionsgrad nach den ersten zwei Synthesen bei 2,3 lag, bei der dritten bzw. vierten Synthese allerdings auf 1,8 bzw. 1,4 sank. Parallel zur Verringerung des Substitutionsgrades verkürzte sich die Lösezeit von Cellulose in der ionischen Flüssigkeit mit jedem weiteren Recyclingzyklus signifikant. Als Grund für die verbesserte Löslichkeit wurde die Bildung von 1-Ethyl-2-hydroxyethyl-3-methylimidazolium (EHEMIM) identifiziert, das durch die Reaktion einer Carben-Spezies des 1-Ethyl-3-methylimidazoliums (EMIM) mit Acetaldehyd - welches als Nebenprodukt bei der Vinylester-basierten Synthese auftritt - entsteht. Weiterhin konnte gezeigt werden, dass das Vorhandensein von Wasser für das verbesserte Lösungsvermögen des [EHEMIM]-[EMIM]OAc-Systems essentiell ist. Die besten Lösungseigenschaften wurden bei einem Kationenanteil von 50 mol-% EHEMIM bzw. 50 mol-% EMIM und einem Wassergehalt von 8,5 % w/w beobachtet. Dieses optimierte [EHE-MIM]-[EMIM]OAc-Wasser-System ermöglicht das Lösen von 14 % w/w Cellulose bei 80°C innerhalb von 3 Stunden. Im Gegensatz dazu löst die ursprüngliche ionische Flüssigkeit [EMIM]OAc bzw. [EMIM]OAc mit einem optimalen Wassergehalt von 10 % w/w unter den gleichen Bedingungen lediglich 1 % w/w bzw. 2 % w/w Cellulose.
  • Thumbnail Image
    ItemOpen Access
    Thin organic‐inorganic anti‐fouling hybrid‐films for microreactor components
    (2022) Neßlinger, Vanessa; Welzel, Stefan; Rieker, Florian; Meinderink, Dennis; Nieken, Ulrich; Grundmeier, Guido
    Deposit formation and fouling in reactors for polymer production and processing especially in microreactors is a well‐known phenomenon. Despite the flow and pressure loss optimized static mixers, fouling occurs on the surfaces of the mixer elements. To improve the performance of such parts even further, stainless steel substrates are coated with ultra‐thin films which have low surface energy, good adhesion, and high durability. Perfluorinated organosilane (FOTS) films deposited via chemical vapor deposition (CVD) are compared with FOTS containing zirconium oxide sol‐gel films regarding the prevention of deposit formation and fouling during polymerization processes in microreactors. Both film structures led to anti‐adhesive properties of microreactor component surfaces during aqueous poly(vinylpyrrolidone) (PVP) synthesis. To determine the morphology and surface chemistry of the coatings, different characterization methods such as X‐ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy as well as microscopic methods such as field‐emission scanning electron microscopy (FE‐SEM) and atomic force microscopy (AFM) are applied. The surface free energy and wetting properties are analyzed by means of contact angle measurements. The application of thin film‐coated mixing elements in a microreactor demonstrates a significant lowering in pressure increase caused by a reduced deposit formation.