08 Fakultät Mathematik und Physik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9
Browse
Item Open Access Dominant dimensions of finite dimensional algebras(2012) Abrar, Muhammad; König, Steffen (Prof. Dr. rer. nat.)We study the dominant dimensions of three classes of finite dimensional algebras, namely hereditary algebras, quotient algebras of trees and serial algebras. We see that a branching vertex plays a key role to establish that the dominant dimension (dom.dim) of hereditary algebras (quivers) is at most one. We define arms of a tree and split trees into two classes: trees without arms and trees with arms. Like hereditary algebras, it turns out that the dominant dimension of the quotient algebras of trees can not exceed one. For serial algebras A associated to linearly oriented quiver with n vertices, we give lower and upper bounds of dom.dimA, and show that the bounds are optimal. It is also shown that some of the algebras A satisfy the conditions in the higher dimensional version of the Auslander's correspondence. Further we consider serial algebras corresponding to one-oriented-cycle quiver Q with n vertices, and give optimal bounds for a special subclass of these algebras. We conjecture that for any non self-injective quotient algebra A of Q dom.dimA is at most 2n-3, where the number of vertices n is bigger than 2.. Finally, we construct few examples of algebras having large (finite) dominant dimensions.