08 Fakultät Mathematik und Physik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9

Browse

Search Results

Now showing 1 - 10 of 40
  • Thumbnail Image
    ItemOpen Access
    Einfluss paramagnetischer Defekte auf Transport und Rekombination in mikrokristallinem Silizium
    (2003) Bronner, Wolfgang; Mehring, Michael (Prof. Dr. rer. nat.)
    Dünne Halbleiterschichten haben ein großes technologisches Potential. TFT-Flachbildschirme oder Dünnschichtsolarzellen sind bereits etablierte Produkte auf dem Markt. Zu den aussichtsreichen Materialsystemen für derartige Anwendungen gehört mikrokristallines Silizium. Die Struktur von mikrokristallinem Silizium im Übergangsbereich vom amorphen zum einkristallinen Silizium ergibt fundamentale grundlagenphysikalische Fragestellungen. Der Schwerpunkt dieser Arbeit liegt auf der Untersuchung von mikrokristallinem Silizium. Ergänzend werden Untersuchungen an polymorphen Siliziumdünnfilmen vorgestellt. Ein breites Spektrum an experimentellen Methoden ermöglicht den Zugang zu vielseitigen Fragestellungen. Dabei handelt es sich um die konventionelle Elektronenspinresonanz (ESR) im Hochfeld, elektrisch detektierte ESR und um elektrooptische Experimente, wie das Experiment der modulierten Photoströme, die konstante Photostrommethode, die Methode des stationären Ladungsträgergitters und stationäre Photostrommessungen bei tiefen Temperaturen. Wie in dieser Arbeit anhand einer Computersimulation gezeigt wird, unterliegen die Ladungsträgerelektronen im mikrokristallinen Silizium einem Spinaustauschprozess. Bei tiefen Temperaturen erfolgt der Photostromtransport durch Energy-Loss Hopping auf Bandausläuferzuständen. Mit Hilfe der elektrisch detektierten ESR konnten Transport- und Rekombinationspfade in den Materialsystemen aufgeklärt werden. Das paramagnetischen Defekten dabei eine bedeutende Rolle zukommt, werden durch die Messungen an einer elektronenbestrahlten mikrokristallinen Probe untermauert.
  • Thumbnail Image
    ItemOpen Access
    Getriebene kolloidale Monolagen auf lichtinduzierten Substratpotentialen
    (2013) Bohlein, Thomas; Bechinger, Clemens (Prof. Dr.)
    Reibung lässt sich auf makroskopischer Längenskala durch das Amontonsche Gesetz beschreiben, welches besagt, dass Reibungs- und Normalkraft zueinander direkt proportional sind. Dieser einfache Zusammenhang beruht auf dem Scheren unzähliger Mikrokontakte, ein Mechanismus, der erst in den 1950er Jahren theoretisch verstanden und erst nach der Jahrtausendwende experimentell aufgelöst wurde. Um grundlegende Erkenntnisse über Reibung zu gewinnen, müssen allerdings die Mechanismen verstanden werden, die zum Brechen eines einzelnen Mikrokontakts führen, also Prozesse, die auf Längenskalen von Mikro- bis Nanometern ablaufen. Dies führte zur Entwicklung des Forschungsfelds der Nanotribologie, welches Reibung, Schmierung und Verschleiß auf der Nanoskala behandelt. Ein wichtiges theoretisches Werkzeug der Nanotribologie sind simplifizierte tribologische Modelle, wie das Tomlinson oder das Frenkel-Kontorova (FK) Modell. Das Tomlinson Modell beschreibt punktförmige Kontakte, für realistischere, d.h. ausgedehnte Kontaktgeometrien wird von theoretischer Seite das getriebene Frenkel-Kontorova Modell verwendet. Während die Vorhersagen des Tomlinson Modells durch Messungen mit dem Rasterkraftmikroskop bestätigt wurden, existiert bisher kein experimentelles System, um das FK Modell detailliert zu studieren. Von besonderem Interesse sind hierbei sog. topologische Solitonen, die im Rahmen des Frenkel-Kontorova Modells vorhergesagt werden und welche einen effizienten Mechanismus für den Massentransport auf kleinen Längenskalen darstellen. Die gezielte Erzeugung und Manipulation topologischer Solitonen bietet eine Perspektive, Reibung auch auf der Nanoskala zu reduzieren. In dieser Arbeit wird die erste experimentelle Realisierung eines zweidimensionalen getriebenen Frenkel-Kontorova Modells verwirklicht. Hierfür dienen kolloidale Monolagen miteinander wechselwirkender Partikel, welche über stationäre lichtinduzierte Substratpotentiale getrieben werden. Der Aufbau erweist sich dabei als ideales Modellsystem, da nahezu alle relevanten Parameter in situ variiert werden können. Die geladenen Partikel wechselwirken repulsiv mittels eines Yukawa Potentials, dessen Reichweite über die Ionenkonzentration der Lösung kontrolliert wird. Die Interferenz mehrerer Laserstrahlen erlaubt es, ausgedehnte Lichtfelder mit mehreren zehntausend Minima zu erzeugen, welche als Substratpotential für die kolloidale Monolage dienen. Durch Änderung von Anzahl und Anordnung der Strahlen können sowohl periodische, als auch quasiperiodische Substratpotentiale generiert werden, deren Längenskalen durch Änderung des Einfallswinkels der Strahlen variiert werden können.
  • Thumbnail Image
    ItemOpen Access
    Colloidal monolayers on quasiperiodic laser fields
    (2010) Mikhael, Jules; Bechinger, Clemens (Prof. Dr.)
    Quasicrystals are somewhat paradoxical structures which exhibit many amazing properties distinguishing them from ordinary crystals. Although the atoms are not localized at periodic positions, quasicrystals posses perfect long-range order. Until the early 1980s it was unanimously established that ordered matter is always periodic. Accordingly, the rotational symmetry in real space was thought to be limited to n=2,3,4 and 6. However more than a hundred complex metal alloys, for instance the discretely diffracting icosahedral AlPdMn or decagonal AlNiCo, have defied these crystallographic rules and self-organized into quasicrystals. Although the majority of the identified quasicrystals are complex metal alloys synthesized in the laboratory, recent experimental results proved that quasiperiodic order is not limited to metals. Matter also organizes itself aperiodically at larger length scales where thermal fluctuations play an important role. Recent experiments have shown that quasiperiodic order is also oberved in soft matter systems, such as micellars, polymers, and binary nanoparticles. Quasicrystals show many interesting properties which are quite different from that of periodic crystals. Accordingly, they are considered as materials with high technological potential e.g. as surface coatings, thermal barriers, catalysts or photonic materials. Quasicrystalline structures have been theoretically predicted also in systems with a single type of particles. Nevertheless, experimentally their spontaneous formation has been only observed in binary, ternary or even more complex alloys. Accordingly, their surfaces exhibit a high degree of structural and chemical complexity and show intriguing properties. In order to understand the origin of those characteristics it would be helpful to disentangle structural and chemical aspects which can be achieved by growing single-element monolayers to quasicrystalline surfaces. Apart from understanding how quasicrystalline properties can be transferred to such monolayers, this approach might allow fabrication of materials with novel properties. First heteroepitatic growth experiments on decagonal and icosahedral surfaces indeed demonstrate the formation of Pb, Bi and Sb monolayers with a high degree of quasicrystalline order as determined by low-energy electron diffraction and elastic helium atom scattering experiments. Compared to reciprocal space studies, only recently atomically resolved scanning tunneling microscopy investigations of the adsorbate morphology became possible. Even then, however, it is difficult to relate the structure of the adsorbate to that of the underlying substrate. In that respect, the study of the phase behaviour of colloidal particles interacting with quasiperiodic laser fields can throw new light on fundamental problems of broad interest in the physics of quasicrystals and in condensed matter physics. In fact colloidal systems are meanwhile established as excellent model for atomic systems and colloidal physics have demonstrated that such systems can give answers to many basic physics questions. Depending on the pair-interaction and the concentration, colloidal systems show analogues of all the states of atomic systems: gas, liquid and solid states. The mesoscopic size (nm-µm), the time scales (ms-s) and the tunability of the pair interaction in colloidal systems make them a convenient model system for experimental and theoretical studies. As a consequence, real space analysis by means of video microscopy allows tracking the trajectories of the individual particles and makes the time evolution of the system accessible in detail. Such information is inaccessible in systems investigated by diffraction experiments, as the scattering information is available only averaged over the scattering area. Because in a colloidal system there is direct access to real space information, the strength and nature of the different interactions, the origins of the complex phase behavior could be in different examples identified. In conclusion, the study of the rich phase behavior of colloidal suspensions provides ideal conditions for experimental and theoretical studies. In this Thesis, we report on a real-space investigation of the phase behaviour of charged colloidal monolayers interacting with quasicrystalline decagonal or tetradecagonal substrates created by interfering five or seven laser beams. Different starting configurations, such as dense fluid and triangular crystals with different densities, are prepared. At low intensities and high particle densities, the electrostatic colloidal repulsion dominates over the colloid-substrate interaction and the crystalline structure remains mainly intact. As expected, at very high intensities the colloid-substrate interaction dominates and a quasiperiodic ordering is observed. Interestingly, at intermediate intensities we observe the alignment of crystalline domains along the 5 directions of the quasicrystalline substrate. This is in agreement with observations of Xenon atoms adsorbed on the ten-fold decagonal Al-Ni-Co surface and numerical simulations of weakly adsorbed atomic systems. Intermediate phases are observed for colloid-substrate interactions strong enough to produce defects in the crystal. These defects adapt the form of rows of quadratic tiles. Surprisingly, for specific particle densities (at which the colloid-substrate interaction is minimized) we identify a novel pseudomorphic ordering. This intermediate phase which exhibits likewise crystalline and quasicrystalline structural properties can be described by an Archimedean-like tiling consisting of alternating rows of quadratic and triangular tiles. The calculated diffraction pattern of this phase is in agreement with recent observations of copper adsorbed on icosahedral AlPdMn surfaces. Interestingly, we also observe the formation of the same phase on tetradecagonal substrates also at densities for which the potential energy of the colloidal system is minimized. Although the structure can also be described by rows of triangles and rows of squares, a closer analysis reveals substantial differences. Here, large domains with almost periodic ordering are found. We show that this behavior is closely related to the low density of highly symmetric local motifs in the substrate potential. In the second part of this Thesis the conditions under which quasicrystals form are investigated. Currently, it is not clear why most quasicrystals hold 5- or 10-fold symmetry but no single example with 7 or 9-fold symmetry has ever been observed. Since the properties of quasicrystals are strongly connected to their atomic structure, a better understanding of their growth mechanisms is of great importance. In contrast to crystals which are periodic in all three dimensions, quasiperiodicity is always (except for icosahedral quasicrystals) restricted to two dimensions. Accordingly, three-dimensional quasicrystals are comprised of a periodic stacking of quasiperiodic layers and any hurdle in the formation of quasiperiodic order within a single layer will eventually prohibit their growth along the periodic direction. In this Thesis, we also report on geometrical constraints which impede the formation of quasicrystals with certain symmetries in a colloidal model system. This is achieved by subjecting a colloidal monolayer to N=5- and 7-beam quasiperiodic potential landscapes. Our results clearly demonstrate that quasicrystalline order is much easier established for N = 5 compared to N = 7. With increasing laser intensity we observe that the colloids first adopt quasiperiodic order at local areas which then laterally grow until an extended quasicrystalline layer forms. As nucleation sites where quasiperiodicity originates, we identify highly symmetric motifs in the laser pattern. We find that their density strongly varies with n and surprisingly is smallest exactly for those quasicrystalline symmetries which have never been observed in atomic systems. Since such high symmetry motifs also exist in atomic quasicrystals where they act as preferential adsorption sites, this suggests that it is indeed the deficiency of such motifs which accounts for the absence of e.g. materials with 7-fold symmetry. In addition to the fundamental aspects, we report in this Thesis on the fabrication of large colloidal quasiperiodic layers incorporated in a polymer hydrogel matrix. Because quasicrystals have higher point group symmetry than ordinary crystals, micrometer-scale quasicrystalline materials are expected to exhibit large and isotropic photonic bandgaps in the visible range. In our case, the quasiperiodic symmetries are induced using extended light fields. The reported gelled colloidal quasicrystals are unique in that they have large sizes as well as good optical uniformity. With laser diffraction the in situ variable length scale of such materials is demonstrated. In conclusion, we have studied the phase behavior of charged colloidal particles interacting with quasiperiodic laser fields. We showed that novel pseudomorphic growth can lead to the formation of a phase which exhibits likewise crystalline and quasicrystalline structural properties. We also performed unconventional measurements in order to understand why the formation of quasicrystals is limited to specific rotational symmetries. We have found that geometrical hurdles play a crucial role in the proliferation of quasiperiodicity and that such hurdles can hindered or even prohibited the formation of e.g. 7- or 9-fold symmetry. And finally, we have shown that the combination of extended light fields and hydrogel matrices leads to the formation of large quasiperiodically ordered colloidal materials.
  • Thumbnail Image
    ItemOpen Access
    High space‐bandwidth‐product (SBP) hologram carriers toward photorealistic 3D holography
    (2024) Li, Jin; Li, Xiaoxun; Huang, Xiangyu; Kaissner, Robin; Neubrech, Frank; Sun, Shuo; Liu, Na
    3D holography capable of reproducing all necessary visual cues is considered the most promising route to present photorealistic 3D images. Three elements involving computer‐generated hologram (CGH) algorithms, hologram carriers, and optical systems are prerequisites to create high‐quality holographic displays for photorealistic 3D holography. Especially, the hologram carrier directly determines the holographic display capability and the design of high space‐bandwidth‐product (SBP) optical systems. Currently, two categories of hologram carriers, i.e., spatial light modulators (SLM) and metasurfaces, are regarded as promising candidates for photorealistic 3D holography. However, most of their SBP capability still cannot match the amount of information generated by the CGH. To address this issue, tremendous efforts are made to improve the capability of hologram carriers. Here, the main hologram carriers (from SLM to metasurfaces) that are widely utilized in holography systems to achieve high SBP capability (high resolution, wide viewing angles, and large sizes) are reviewed. The purpose of this review is to identify the key challenges and future directions of SLM‐based and metasurface‐based holography for photorealistic 3D holographic images.
  • Thumbnail Image
    ItemOpen Access
    Hochfeld-ESR und Doppelresonanz an austauschgekoppelten Spinsystemen
    (2004) Kümmerer, Hans-Jürgen; Denninger, Gert (Prof. Dr.)
    In dieser Arbeit wird neben der Standardmethode der ESR (Elektronen Spin Resonanz) mit der Overhauser-Spektroskopie schwerpunktartig eine Doppelresonanztechnik eingesetzt, in der die Atomkerne als Sonden zur Abtastung der elektronischen Wellenfunktion heran gezogen werden. Beide Messmethoden finden bei einer Mikrowellenfrequenz von 94 GHz (W-Band) und einem zugehörigen Magnetfeld von 3,4 T Anwendung. Anhand von drei Probensystemen werden exemplarisch die Vorzüge sowie die erweiterten Möglichkeiten, aber auch die Nachteile des derzeitigen Standes der Hochfeldspektroskopie verdeutlicht: Der Isolator Ga2O3 kann durch geeignete Verfahren bei der Herstellung in einen n-dotierten Halbleiter überführt werden. Die so eingebrachten Leitungselektronen sind weitgehend delokalisiert und weisen eine starke Hyperfeinkopplung mit den Gallium-Kernen des Wirtsgitters auf. Mit Hilfe der Hochfeld-Spektroskopie gelang die eindeutige Zuordnung aller Spektrallinien, und erst deren separate Untersuchung eröffnete den Zugriff auf weitere Probeneigenschaften. So konnte etwa die eigentlich ausgemittelte Hyperfeinwechselwirkung rekonstruiert sowie die Kernrelaxationsraten einer systematischen Analyse zugänglich gemacht werden. Das gute erreichte Signal-Rausch-Verhältnis erlaubte die Durchführung von Messreihen mit variierter Mikrowellenleistung zur Bestimmung des thermischen Endwertes der Overhauser-Verschiebung. Insbesondere konnte das Signal zu solch geringen Mikrowellen-Sättigungsparametern verfolgt werden, bei denen die Verschiebung schon deutlich vom linearen Leistungsverhalten abweicht und klar einem konstanten Wert entgegenstrebt. Auch konnte dieser thermische Endwert direkt aus einer Anpassung an die Messreihen bestimmt werden, während bisherige X-Band-Messungen lediglich indirekte Aussagen erlaubten. Mit diesen Messungen konnte auch unmittelbar die Aufenthaltswahrscheinlichkeiten der Elektronen an den Kernorten in den beiden inäquivalenten kristallografischen Positionen, also den oktaedrisch bzw. tetraedrisch koordinierten Gitterplätzen bestimmt werden, die sich als identisch herausstellten. Bei der Untersuchung der Verbindung SES (Sodium Electro Sodalite) konnte mit dem Na-Kernsignal unseres Wissens nach erstmalig ein Pulverspektrum mit der Overhauser-Spektroskopie in Doppelresonanz direkt gemessen werden. Dieses Probensystem gehört der umfangreichen Materialklasse der Zeolite an, die sich in ihrem mikroskopischen Aufbau allesamt durch räumliche Gitterstrukturen auszeichnen. In SES befindet sich als Besonderheit im Zentrum eines jeden der konstituierenden Käfige genau ein paramagnetisches Elektron mit einer s-artigen Wellenfunktion. Die Wechselwirkung der Elektronen mit den sie direkt in tetraedrischer Anordnung umgebenden Natrium-Kernen eignet sich in geradezu mustergültiger Weise als Grundlage für die Anwendung der Overhauser-Verschiebungsspektroskopie. Zur Analyse des resultierenden Pulverspektrums erweist sich vor allem die gegenseitige Ergänzung der konventionellen X-Band- und der hier propagierten W-Band-Spektrometer als sehr erfolgreich. Das Probensystem mit der Bezeichnung Si/Si(1-y)C(y) beruht auf einer epitaktisch aufgebrachten Heterostruktur, deren Schichtabfolge einen rechteckförmigen Potentialtopf für Elektronen entstehen lässt. Die Befüllung dieses Quantum Wells wird durch Elektronen aus einer n-dotierten Spenderschicht sichergestellt und führt zur Ausbildung eines zweidimensionalen Elektronengases (2DEG). Diese beiden Schichten sind zwar durch eine Potentialbarriere voneinander getrennt, dennoch gestattet die verbesserte spektrale Auflösung der Hochfeldspektroskopie die Beobachtung und korrekte Beschreibung zweier Austauschprozesse zwischen dem 2DEG und der Spenderschicht. Auch lässt sich der Einfluss der inneren Wechselwirkungen auf die Größe des g-Faktors sowie dessen Anisotropie quantitativ erfassen und deuten.
  • Thumbnail Image
    ItemOpen Access
    Mikroskopische Thermodynamik kolloidaler Teilchen
    (2008) Blickle, Valentin; Bechinger, Clemens (Prof.)
    Einhergehend mit der industriellen Revolution des 19. Jahrhunderts entwickelte sich ein neues eigenständiges Teilgebiet der Physik, die Thermodynamik. Im Mittelpunkt des Interesses standen damals Wärmekraftmaschinen und das Verständnis der Umwandlung von Wärme in mechanische Arbeit. Im Rahmen der Thermodynamik lassen sich auch chemische Reaktionen oder biologische Prozesse beschreiben. Dabei bleibt sie auf große Systeme beschränkt, wo eine Vielzahl von inneren Freiheitsgraden dazu führt, dass Fluktuationen vernachlässigt werden können. Mit zunehmender Verfeinerung und Miniaturisierung der physikalischen Prozesse im allgemeinen und der damit verbundenen Ausdifferenzierung der Manipulations- und Messmethoden erlebte das Interesse an thermodynamischen Prozessen - diesmal auf mikroskopischer Ebene - eine Renaissance. Richtungsweisend für diese Verfeinerung sind vor allem Kraftmikroskopie und optische Pinzetten, die es erlauben, Systeme auf einer Nanometer-Skala zu untersuchen. Von Bedeutung sind hierbei biologische Maschinen, Makromoleküle, oder auch miniaturisierte mechanische Bauelemente. Typischerweise sind die charakteristischen Energieskalen dieser Systeme von der Größenordnung her vergleichbar mit der thermischen Energie, so dass Fluktuationen nicht vernachlässigt werden können. Als weitere Kategorie von mesoskopischen Systemen stehen kolloidale Partikel im Blickpunkt dieser Arbeit. Diese in einem Lösungsmittel suspendierte Teilchen erweisen sich dabei als ideale Objekte, um die statistischen Eigenschaften kleiner Systeme zu untersuchen. Hierbei kombinieren kolloidale Systeme zwei Vorteile. Erstens spielen sich die Fluktuationen auf einer Längenskala ab, auf der sie mittels optischer Mikroskopie beobachtet werden können. Zweitens können Wechselwirkungen in kolloidalen Systemen durch Zugabe von Ionen bzw. Polymeren maßgeschneidert werden. Die Wechselwirkung der Kolloidpartikel mit externen Feldern bietet eine weitere Möglichkeit der Manipulation. Dabei eröffnen Laserpinzetten die Möglichkeit, durch Einstellung externer Parameter wie Intensität, Position, Polarisation etc., das System auf einer mikroskopischen Skala schnell und reproduzierbar von außen zu manipulieren. Diese Arbeit wendet sich der experimentellen Überprüfung der stochastischen Thermodynamik zu. In einem ersten Experiment befindet sich das untersuchte Kolloidteilchen vor einer Glasoberfläche und wird von zwei koaxialen antiparallelen optischen Pinzetten festgehalten. Mit Hilfe dieser kann das Partikel aus dem Gleichgewicht heraus getrieben werden, gleichzeitig wird dessen Position durch evaneszente Lichtstreumikroskopie (TIRM, engl.: Total Internal Reflection Microscopy) mit hoher zeitlicher und räumlicher Auflösung verfolgt. Sowohl die geleistete Arbeit W als auch die ins Wärmebad übertragene Wärme Q können aus der gemessenen Partikeltrajektorie direkt berechnet werden. Somit bringt dieses Experiment den Nachweis, dass der erste Hauptsatz der Thermodynamik auch für fluktuierende Größen erfüllt ist. Charakteristisch ist jetzt nicht mehr der Wert einer Einzelmessung W, sondern die Verteilung p(W), die man erhält, wenn über viele Messungen gemittelt wird. Den theoretischen Vorhersagen entsprechend ist diese Verteilung asymmetrisch und nicht Gauß'sch. Dennoch zeigen die Experimente, dass sowohl die Jarzynski-Relation als auch das das detaillierte Fluktuationstheorem erfüllt sind. In einem zweiten Experiment wird ein Kolloidteilchen mit Hilfe einer rotierenden Laserpinzette so getrieben, dass es sich mit konstanter Geschwindigkeit auf einer Kreisbahn bewegt. Durch Modulation der Laserleistung wird ein zusätzliches schwaches sinusförmiges Potential V entlang der Kreisbahn erzeugt. Der so generierte stationäre Nichtgleichgewichtszustand wird zwar wie ein Gleichgewichtszustand durch eine zeitunabhängige Wahrscheinlichkeitsverteilung charakterisiert, besitzt im Gegensatz zu diesem jedoch einen nicht verschwindenden Strom, permanent wird Energie ins Wärmebad abgegeben. Dies führt zur Verletzung des Boltzmann-Faktors, der im Gleichgewicht das Potential mit der stationären Wahrscheinlichkeitsverteilung verknüpft. Unter Berücksichtigung des Stromes leiten wir eine Erweiterung des Boltzmann-Faktors her, so dass das Potential auch unter stationären Nichtgleichgewichtsbedingungen direkt aus der stationären Wahrscheinlichkeitsverteilung berechnet werden kann. Die diffusive Bewegung des Kolloidpartikels in einem gekippten periodischen Potential unterscheidet sich fundamental von der Brown'schen Bewegung im thermischen Gleichgewicht, wo ein zusätzliches Potential V immer die Diffusionsbewegung eines freien Teilchens einschränkt. Im stationären Nichtgleichgewicht kann diese durch die Anwesenheit eines Potentials verstärkt werden. Wie die Experimente zeigen, durchläuft der Diffusionskoeffizient als Funktion der treibenden Kraft ein Maximum. In dem als Giant Diffusion bekannten Phänomen übersteigt, in guter Übereinstimmung mit theoretischen Vorhersagen, der gemessene Diffusionskoeffizient seinen Gleichgewichtswert um das Fünffache. Die beobachtete Kraftabhängigkeit des Diffusionskoeffizienten hat weitreichende Konsequenzen. Die für das Gleichgewicht so fundamentale Einstein-Relation ist im stationären Nichtgleichgewicht nicht mehr gültig. Die Experimente zeigen eine Abweichung von fast einer Größenordnung. Wir zeigen, dass durch Addition einer Geschwindigkeitskorrelationsfunktion die Einstein-Relation korrigiert werden kann. Deren Gültigkeit umfasst dann auch wieder stationäre Nichtgleichgewichtszustände.
  • Thumbnail Image
    ItemOpen Access
    Dimerization and oligomerization of DNA-assembled building blocks for controlled multi-motion in high-order architectures
    (2021) Xin, Ling; Duan, Xiaoyang; Liu, Na
    In living organisms, proteins are organized prevalently through a self-association mechanism to form dimers and oligomers, which often confer new functions at the intermolecular interfaces. Despite the progress on DNA-assembled artificial systems, endeavors have been largely paid to achieve monomeric nanostructures that mimic motor proteins for a single type of motion. Here, we demonstrate a DNA-assembled building block with rotary and walking modules, which can introduce new motion through dimerization and oligomerization. The building block is a chiral system, comprising two interacting gold nanorods to perform rotation and walking, respectively. Through dimerization, two building blocks can form a dimer to yield coordinated sliding. Further oligomerization leads to higher-order structures, containing alternating rotation and sliding dimer interfaces to impose structural twisting. Our hierarchical assembly scheme offers a design blueprint to construct DNA-assembled advanced architectures with high degrees of freedom to tailor the optical responses and regulate multi-motion on the nanoscale.
  • Thumbnail Image
    ItemOpen Access
    Mikrowellenabsorption zur Leitfähigkeitsbestimmung von Supraleitern
    (2004) Nebendahl, Bernd; Mehring, Michael (Prof. Dr.)
    Diese Arbeit führt die neue Methode der Mikrowellenabsorption in das Gebiet der Temperatur und Magnetfeld-abhängigen Hochfrequenzleitfähigkeit ein. Mikrowellenabsorption wurde für die Hochtemperatursupraleiter eingeführt nachdem klar wurde, dass diese Methode die bisher einzige Methode ist, die es erlaubt die Ergebnisse der Leitfähigkeit zu Magnetfeldern weit jenseits der experimentell zugänglichen Felder zu extrapolieren. Die Leitfähigkeit für normale Leiter ist im allgemeinen durch das Ohm'sche Gesetz beschrieben. Diese Beschreibung wird für Supraleiter vom Typ II verfeinert. Von besonderem Interesse ist hierbei die Feld- und Temperaturabhängigkeit der komplexen AC-Leitfähigkeit im Fall statischer oder sich bewegender Flusslinien. Nach einem ersten allgemeinen Kapitel werden die theoretischen und experimentellen Details entwickelt die notwendig sind Messungen durchzuführen und zu interprestieren. Die Methode des gefüllten Resonators wird verglichen mit anderen Methoden wir DC- oder AC-Widerstandsmessungen sowie mit nichtresonanten Reflektions- oder Transmissionsmessungen und Endplattenmethoden. Für den gefüllten Resonator ist es notwendig die experimentellen Daten Resonanzfrequenz und Güte mit der intrinsischen komplexen Leitfähigkeit zu verbinden. Verschiedene Methoden wie die direkte analytische oder numerische Berechnung sowie störungstheoretische Methoden werden bzgl. Aufwand und Einschränkungen in Bezug auf Probengeometrie und Leitfähigkeit verglichen. Im nächsten Teil wird die experimentelle Methode beschrieben, ausgehend von dem Problem wie die Resonanzfrequenz eines Resonators schnell und mit hoher Genauigkeit gemessen werden kann. Die vorgeschlagenen Methode benutzt eine modulierte Quellen, deren Signal durch den Resonator transmisttiert wird. Die transmittierte Leistung wird von einer Mikrowellendiode gemessen. Die Leistungsmodulation wird mit einem Lock-In Verstärker nachgewiesen. Die höheren Harmonischen werden verwendet um die Güte zu bestimmen, wobei die fundamentale Modulation zur Frequenzstabilisierung der Quelle verwendet wird um mit einer Frequenzmessung der Quelle die Resonanzfrequenz zu bestimmen. Die Ausdrücke für die Modulation werden für den quasistatischen Fall entwickelt und lönnen in dieser From zur Gütebestimmung verwendet werden. Die Einschränkungen der quasistatischen Beschreibung werden untersucht. Nach dem experimentellen Teil werden die Ergebnisse des theoretischen Teils diskutiert. Dieser Teil ist aufgeteilt in einen ersten Teil, in dem die Metjode beschrieben wird, wie aus den Messdaten Leitfähigkeiten bestimmt werden und wie Fehler der Messdaten und der Parameter der Inversion das Ergebnis beeinflussen. Im zweiten Teil wird die numerische Methode beschrieben, die verwendet wird um die Ergebnisse im Rahmen des Modells der effektiven Leitfähigkeit zu verstehen. Im letzen Teil werden die Ergebnisse dargestellt und verglichen. Beginnend mit Mb werden die Effekte der Filmdicke für drei verschiedenen Dicken gezeigt. Nach dem Vergleich werden Schlüsse gezogen. Diese Filme zeigen abhängig von der Dicke mehr oder weniger stark ausgeprägte Geometrieeffekte. Falls die Filmdicke kleiner als die Kohärenzlänge ist, wird diese reduziert was zu einem grösseren kritischen Feld führt. Ausserdem wird der supraleitende Übergang breiter und die Übergangstemperatur selbst wird zu tiefen Temperaturen hin verschoben. Zusätzlich werden Fluktuationen durch die Reduktion der Dimensionalität sichtbar. Die Ergebnisse dür die YBCO Filme zeigen diese Effekte nicht, denn deren Kohärenzlänge ist immer kleiner als die Filmdicke. Trotzdem ist das Material interessant, denn es zeigt, dass die Methode tatsächlich in der Lage ist obere kritische Felder zu bestimmen, die größer als die experimentell zugänglichen sind.
  • Thumbnail Image
    ItemOpen Access
    Chirale Trennung kolloidaler Teilchen in helikalen Flussfeldern
    (2013) Aristov, Maria; Bechinger, Clemens (Prof. Dr.)
    Die Händigkeit bzw. Chiralität von Objekten existiert in der Natur auf allen Längenskalen von der molekularen bis zur makroskopischen Ebene. Diese geometrische Eigenschaft ausgedehnter Körper beinhaltet, dass das Spiegelbild mit dem Original nicht zur Deckung gebracht werden kann. Die Entdeckungen von Pasteur, die mehr als 150 Jahre zurückliegen, haben das Interesse an molekularer Chiralität und ihrer Einwirkung auf biologische Systeme geweckt. Es ist seither bekannt, dass Enantiomere, d.h. Moleküle, die unterschiedliche Händigkeit aufweisen, in einer chiralen Umgebung, z. B. einem lebenden Organismus, verschiedene Reaktionen bewirken. Chirale Komponenten chemischer Verbindungen unterscheiden sich unter anderem in ihren sensorischen Eigenschaften wie Geruch und Geschmack. So werden die Enantiomere von Limonen durch einen Orangen- bzw. Zitronenduft wahrgenommen. Während natürliche Stoffe meistens nur in einer Chiralität vorkommen, werden bei einer künstlichen Synthese beide Enantiomere typischerweise in gleichen Anteilen hergestellt. Die beiden Komponenten solcher racemischer Mischungen haben oft sehr unterschiedliche Eigenschaften in Bezug auf ihre physiologische Aktivität, ihren Wirkungsmechanismus, ihre Toxizität und Nebenwirkungen. Die Vermarktung eines Arzneistoffes als Racemat kann wie im Fall von Thalidomid zu dramatischen Folgen führen: ein als Schlaf- und Beruhigungsmittel verschriebenes Medikament führte zu schweren körperlichen Schäden bei Neugeborenen. Das Anwachsen der Aufmerksamkeit in Bezug auf chiralitätsspezifische Unterschiede in chemischer, biologischer und pharmakologischer Wirkung der Enantiomere veranlasste in vielen Ländern die Einführung gesetzlicher Richtlinien, die während der Entwicklung chiraler Arzneimittel eingehalten werden müssen. Dabei werden neben der quantitativen Bestimmung der Zusammensetzung chiraler Arzneistoffe pharmakologische Untersuchungen beider Bestandteile verlangt. Daher ist die Entwicklung leistungsfähiger und zuverlässiger Separationsmethoden und Analysetechniken von zentraler Bedeutung bei der Herstellung von Arzneimitteln, Düngemitteln, Lebensmittelzusätzen und Duftstoffen. Enantiomerengewinnung erfolgt meistens durch Trennung einer racemischen Mischung, wobei hier eine Vielzahl von Methoden zur Auswahl steht. Die typischen Separationstechniken wie Chromatographie und Elektrophorese basieren auf der Verwendung homochiraler Phasen, die selektiv mit einem der Enantiomere reagieren. Die Suche nach einem passenden chiralen Selektor erfolgt in jedem einzelnen Fall nach einer zeitaufwendigen und kostspieligen „trial and error“ Methode. Eine vielseitig anwendbare, auch in kommerzieller Hinsicht interessante Separationstechnik konnte bisher nicht entwickelt werden. Das Konzept chiraler Trennung in mikrofluidischen Kanälen stellt eine attraktive Lösung gegenüber chemischen Verfahren dar. Das vor mehr als 20 Jahren gegründete Forschungsgebiet, das später als µTAS (engl.: Micro Total Analysis System) oder Lab-on-a-Chip bezeichnet wurde, hat sich in vielen Anwendungsgebieten der Chemie und Biologie etabliert. Darunter versteht man experimentelle Systeme, die auf einem wenige Zentimeter großen Chip angeordnet sind und dank ihrer vielfältigen Bauelemente zur Synthese und vollständigen Analyse kleinster Probenvolumen eingesetzt werden können. In dieser Arbeit wird ein neuartiges Konzept zur Enantiomerentrennung in einem Modellsystem bestehend aus kolloidalen Suspensionen chiraler Teilchen in helikalen mikrofluidischen Strömungen demonstriert. Kolloidale Suspensionen werden oft als Modelle für molekulare und atomare Systeme verwendet. Wegen der vielfältigen Beeinflussungsmöglichkeiten mit äußeren Feldern, steuerbaren Wechselwirkungen zwischen den Teilchen und definierter Form und Oberfläche einzelner Partikel finden sie vielseitige Anwendung im Bereich der Grundlagenforschung. Ein weiterer Grund für die Verwendung kolloidaler Teilchen als Modellsystem ist ihre mesoskopische Größe. Die Dynamik des Systems kann durch Verfolgung einzelner Teilchenbahnen mittels optischer Mikroskopie erfasst werden. Die in dieser Arbeit gewonnenen Ergebnisse zeigen, dass Enantiomerentrennung ohne Verwendung chiraler Selektoren auf Mikrometerskala erreicht werden kann. Die Frage nach der Anwendbarkeit dieser Methode auf molekulare Systeme durch Skalierung des Kanals zu kleineren Dimensionen bleibt noch offen. Im Submikrometerbereich gewinnt Brownsche Bewegung zunehmend an Bedeutung, was vermutlich zur Zerstörung chiralitätsspezifischen räumlichen Aufteilung führen kann. Es kann jedoch erwartet werden, dass unsere Methode bei Verwendung kleinerer Kanäle mit optimierter Geometrie zur Trennung chiraler Objekte im Nanometerbereich eingesetzt werden kann.
  • Thumbnail Image
    ItemOpen Access
    Transformable plasmonic helix with swinging gold nanoparticles
    (2022) Peil, Andreas; Zhan, Pengfei; Duan, Xiaoyang; Krahne, Roman; Garoli, Denis; M. Liz‐Marzán, Luis; Liu, Na
    Control over multiple optical elements that can be dynamically rearranged to yield substantial three‐dimensional structural transformations is of great importance to realize reconfigurable plasmonic nanoarchitectures with sensitive and distinct optical feedback. In this work, we demonstrate a transformable plasmonic helix system, in which multiple gold nanoparticles (AuNPs) can be directly transported by DNA swingarms to target positions without undergoing consecutive stepwise movements. The swingarms allow for programmable AuNP translocations in large leaps within plasmonic nanoarchitectures, giving rise to tailored circular dichroism spectra. Our work provides an instructive bottom‐up solution to building complex dynamic plasmonic systems, which can exhibit prominent optical responses through cooperative rearrangements of the constituent optical elements with high fidelity and programmability.