08 Fakultät Mathematik und Physik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9

Browse

Search Results

Now showing 1 - 10 of 35
  • Thumbnail Image
    ItemOpen Access
    Self-organized structures and excitations in dipolar quantum fluids
    (2024) Hertkorn, Jens; Pfau, Tilman (Prof. Dr.)
    Quantum many-body phenomena at a macroscopic scale, such as superfluidity and superconductivity, are rooted in the interplay between microscopic particles, governed by the laws of quantum mechanics. Exploring how this interplay leads to quantum behavior at a large scale allows us to gain a deeper understanding of nature and to discover new quantum phases. An elusive quantum phase in which the frictionless flow of superfluids and the crystal structure of solids coexists - the supersolid - was recently realized with quantum droplets in dipolar Bose-Einstein condensates. In this thesis we investigate self-organized structures, their formation mechanism, and excitations in dipolar quantum fluids created from such Bose-Einstein condensates. We show that the supersolid formation mechanism is driven by density fluctuations due to low-energy roton excitations, leading to a crystal structure of quantum droplets that are immersed in a superfluid background. These roton excitations split into a Goldstone mode and a Higgs amplitude mode, associated to the broken translational symmetry in the supersolid. We investigate the symmetry breaking of dipolar quantum fluids in a range of confinement geometries and establish a comprehensive description of elementary excitations across the superfluid to supersolid droplet phase transition. The droplets are stabilized by an interplay between interactions and the presence of quantum fluctuations. We show how this interplay can be used to find regimes where droplets are immersed in a high superfluid background, allowing for frictionless flow throughout the crystal. Moreover we show that towards higher densities beyond the quantum droplet phase, this interplay leads to several new self-organized structures in the phase diagram of dipolar quantum fluids. We theoretically predict new supersolid honeycomb, amorphous labyrinth, and other phases in oblate dipolar quantum fluids. Finally, we present a new experimental setup for the exploration of self-organized phases in dipolar quantum fluids and which also lays the foundation for the implementation of a quantum gas microscope. The results of this thesis present a complete framework for understanding and creating exotic phases in dipolar quantum fluids. The versatile structure formation, governed by a competition of controllable interactions and the presence of quantum fluctuations, positions dipolar quantum fluids as a model system for exploring self-organized equilibrium in weakly-interacting quantum many-body systems.
  • Thumbnail Image
    ItemOpen Access
    Erzeugung eines Bose-Einstein-Kondensats in einer stark anisotropen Magnetfalle
    (2003) Schoser, Jürgen; Pfau, Tilman (Prof. Dr.)
    Im Rahmen dieser Arbeit wurde eine Apparatur zur Erzeugung eines Bose-Einstein-Kondensats mit Rubidium-Atomen in einer stark anisotropen Fallengeometrie konzipiert und im Labor realisiert. Die Bose-Einstein-Kondensation von verdünnten atomaren Gasen wird durch verschiedene Einfang- und Kühlmethoden erreicht. Abweichend von bisherigen Experimenten wurden hier bei den einzelnen experimentellen Stufen zum Teil neue Wege begangen: Ausgehend von der Dampfphase bei Raumtemperatur wird ein intensiver Strahl kalter Atome mittels zweidimensionaler magnetooptischer Kühlung erzeugt. Dieser ermöglicht es, eine großvolumige magnetooptische Atomfalle mit einer hohen Atomzahl zu laden. Mit der hohen optischen Dichte geht zwar eine geringe Kühleffizienz einher, was jedoch durch einen speziellen Kühlschritt, eine verstimmte magnetooptische Fallen-Phase, behoben wird, um Temperaturen im Bereich der Polarisationsgradientenkühlung zu erreichen. Das so präparierte Atomensemble wird in einer Magnetfalle durch Verdampfungskühlung in ein Bose-Einstein-Kondensat überführt. Hierbei wirkt sich besonders die anisotrope Fallengeometrie auf die Effizienz des letzten Kühlschritts aus. Die hier realisierte Apparatur erlaubt es, in das quasi-eindimensionale Regime entarteter Quantengase mit einer gut detektierbaren Atomzahl vorzudringen. Ein analytisches Modell rundet die theoretische Beschreibung der zweidimensionalen magnetooptischen Kühlung ab. Darüberhinaus werden erste Experimente von Bose-Einstein-Kondensaten in optischen Gittern vorgestellt und der Einfluss von interatomarer Wechselwirkung aufgrund von s-Wellen-Streuung auf die Materiewellenbeugung an optischen Stehwellen diskutiert.
  • Thumbnail Image
    ItemOpen Access
    Cavity QED based on room temperature atoms interacting with a photonic crystal cavity : a feasibility study
    (2020) Alaeian, Hadiseh; Ritter, Ralf; Basic, Muamera; Löw, Robert; Pfau, Tilman
    The paradigm of cavity QED is a two-level emitter interacting with a high-quality factor single-mode optical resonator. The hybridization of the emitter and photon wave functions mandates large vacuum Rabi frequencies and long coherence times; features that so far have been successfully realized with trapped cold atoms and ions, and localized solid-state quantum emitters such as superconducting circuits, quantum dots, and color centers Reiserer and Rempe (Rev Modern Phys 87:1379, 2015), Faraon et al. (Phys Rev 81:033838, 2010). Thermal atoms, on the other hand, provide us with a dense emitter ensemble and in comparison to the cold systems are more compatible with integration, hence enabling large-scale quantum systems. However, their thermal motion and large transit-time broadening is a major bottleneck that has to be circumvented. A promising remedy could benefit from the highly controllable and tunable electromagnetic fields of a nano-photonic cavity with strong local electric-field enhancements. Utilizing this feature, here we investigate the interaction between fast moving thermal atoms and a nano-beam photonic crystal cavity (PCC) with large quality factor and small mode volume. Through fully quantum mechanical calculations, including Casimir-Polder potential (i.e. the effect of the surface on radiation properties of an atom), we show, when designed properly, the achievable coupling between the flying atom and the cavity photon would be strong enough to lead to quantum interference effects in spite of short interaction times. In addition, the time-resolved detection of different trajectories can be used to identify single and multiple atom counts. This probabilistic approach will find applications in cavity QED studies in dense atomic media and paves the way towards realizing large-scale, room-temperature macroscopic quantum systems aimed at out of the lab quantum devices.
  • Thumbnail Image
    ItemOpen Access
    Vibrational quenching of weakly bound cold molecular ions immersed in their parent gas
    (2020) Jachymski, Krzysztof; Meinert, Florian
    Hybrid ion–atom systems provide an excellent platform for studies of state-resolved quantum chemistry at low temperatures, where quantum effects may be prevalent. Here we study theoretically the process of vibrational relaxation of an initially weakly bound molecular ion due to collisions with the background gas atoms. We show that this inelastic process is governed by the universal long-range part of the interaction potential, which allows for using simplified model potentials applicable to multiple atomic species. The product distribution after the collision can be estimated by making use of the distorted wave Born approximation. We find that the inelastic collisions lead predominantly to small changes in the binding energy of the molecular ion.
  • Thumbnail Image
    ItemOpen Access
    Ultralong range Rydberg molecules : investigation of a novel binding
    (2010) Bendkowsky, Vera; Pfau, Tilman (Prof. Dr.)
    In this work the existence of a novel type of molecule is shown whose binding is based solely on electron-atom scattering. These molecules are composed of a Rydberg atom and a ground state atom - here Rb(ns) and Rb(5s) - where the binding arises from scattering of the Rydberg electron from the ground state atom. The ground state atom is bound to the Rydberg wavefunction, which has radii on the order of 100nm, and thus these molecules are of long-range. Although the theoretical description of this interaction goes back to the famous work of Fermi in the year 1934 which was expanded in the following decades by Omont and Greene, the experimental proof of their existence was still missing. Up to now, experimental evidence for the ultralong-range Rydberg molecules was found only in spectral line broadenings. The present experiments have demonstrated the direct photoassociation of these ultralong-range Rydberg molecules for Rb(ns)-Rb(5s) triplet states from a cold and dense sample of rubidium 87 atoms for a range of principal quantum numbers, n, between 34 and 40. The high-resolution photoassociation spectra allowed for the observation of several vibrational states separated by only a few Megahertz. Based on the model by Greene the vibrational ground states v=0 are assigned and the dependence of their binding energy on the principal quantum number, n, is used to extract the triplet s-wave scattering length for electron-Rb(5s) collisions from the data. The remarkably good agreement between experiment and theory for the vibrational ground state v=0 over a range of principal quantum numbers attests to the accuracy of Fermi's original pseudopotential approach in describing interactions in excited multi-atom systems. Aside from this good agreement for the state v=0, the measurements also show that contributions from p-wave scattering cannot be neglected, as a number of excited vibrational states is observed in the experiment that are not predicted from the theory assuming only s-wave scattering. Calculations of Li, Pohl and coworkers have shown that a full solution of the electron-atom scattering is necessary for the assignment of all vibrational states. This work finds the molecular bound states to be very sensitive to both s-wave as well as p-wave electron-atom scattering and the Rydberg molecules turn out to be an accurate experimental platform to study electron-atom collisions in a previously inaccessible ultralow-energy regime. In general, the ultralong-range Rydberg molecules investigated here for rubidium are expected for all species with negative scattering length for electron-atom interaction, e. g. the other alkali atoms. Rydberg atom and ground state atom do not even have to be of the same chemical element, the only requirement is a negative scattering length of the ground state atom for electron scattering. Moreover, the binding force of the Rydberg electron is not restricted to a single ground state atom and molecules with more than one ground state atom can be created. The fact that these exotic molecules have huge bond lengths but nevertheless a vibrational spectrum with several states make a new type of ultracold Rydberg chemistry feasible. In the future, larger polymers or even heteronuclear molecules can be realized, where the number of atoms, the constituent atomic elements and the addressed Rydberg state allow to precisely select the properties of the long-range molecule.
  • Thumbnail Image
    ItemOpen Access
    Interacting Rydberg atoms : coherent control at Förster resonances and polar homonuclear molecules
    (2012) Nipper, Johannes Maximilian; Pfau, Tilman (Prof. Dr.)
    Interactions between single atoms are fundamental to physics and to control them is an ultimate goal. The exaggerated properties of Rydberg atoms offer to met the technical challenges to isolate and control single interaction channels in ultracold gases. Here, I present experiments on two subjects related to interactions of Rydberg atoms in dense ultracold clouds. One subject concerns coherence in strongly interacting ensembles of atoms, where the interaction between Rydberg atoms is induced via Stark-tuned Förster resonances. Pulsed experiments, following the idea of Ramsey experiments, are used for high resolution spectroscopy of the Förster defect and phase sensitive detection. Coherent oscillations between pair states and an interaction-induced phase shift of Rydberg atoms are measured. These experiments are accompanied by calculations of the interaction strength and by simulations using the concept of a pair state interferometer. The simulations nicely reproduce the experimental findings and support the observation that the ensemble of atoms in the presence of interactions can be described and controlled coherently. The second subject of this thesis is the measurement of a permanent dipole moment in a homonuclear diatomic molecule that arises by the interaction between a Rydberg atom and a ground state atom. Usually parity symmetry prohibits a permanent dipole moment in diatomic molecules, but here the strong asymmetry between the constituents of the ultralong-range Rydberg molecule allows breaking parity symmetry. These molecules consist of one ground state atom bound inside the Rydberg electron wavefunction of a highly excited atom. Calculations predict dipole moments on the order of 1 Debye. Experimental proof is reported on the measurement of a linear Stark effect of these molecules, in excellent agreement with the calculations.
  • Thumbnail Image
    ItemOpen Access
    Scattering properties of ultra-cold chromium atoms
    (2003) Schmidt, Piet O.; Pfau, Tilman (Prof. Dr.)
    In this work a gas of ultra-cold chromium atoms in a magnetic trap has been prepared and its elastic and inelastic scattering properties have been investigated with regard to Bose-Einstein condensation. Bose-Einstein condensation of dilute atomic gases is achieved using different cooling and trapping techniques. Deviating from the standard way we were able to devise a continuous loading mechanism for a magnetic trap as a result of the spectroscopic properties and the large magnetic dipole moment of chromium. It not only allows us to trap more atoms but also facilitates the subsequent preparation steps. After loading, the magnetic trap is compressed to increase the atomic density. In doing so we also increases the temperature of the atomic cloud. Doppler cooling of the atoms in the compressed trap reduces the temperature and increases the density. Subsequent evaporative cooling further reduces the temperature. The efficiency of the cooling mechanism is determined by the elastic and inelastic scattering properties of atomic species. Ultra-cold collisions between ground state atoms are dominated by s-wave collisions. They are characterized by a single parameter, the scattering length a. We were able to determine the temperature dependence of the elastic collision rate for the two bosonic isotopes 52Cr and 50Cr in a relaxation experiment. Comparing our results with the effective range theory allowed us not only to extract the magnitude of the scattering length, but also its sign. The sign of the scattering length is important since only condensates with a positive scattering length are stable. Our efforts to achieve Bose-Einstein condensation in chromium by evaporative cooling in a magnetic trap resulted in a maximum phase space density of 0.04. Further cooling reduced the phase space density due to increased loss of atoms from dipolar relaxation. We were able to obtain preliminary results on the magnetic field dependence of dipolar relaxation. Our experimental data is in excellent agreement with theory. These experiments confirm the theoretical prediction that the dipolar relaxation rate is independent from the details of the interaction potential but rather scales with the magnetic offset field and the magnetic dipole moment of the atoms. The findings of this work mark an important step towards the realization of a Bose-Einstein condensate with chromium atoms. Especially the knowledge of the elastic and inelastic scattering properties allow now to devise a successful strategy.
  • Thumbnail Image
    ItemOpen Access
    Aufbau einer Messapparatur zur Laserkühlung und hochauflösende Rydberg-Spektroskopie an 87 Rb-Atomen
    (2006) Grabowski, Axel; Pfau, Tilman (Prof. Dr.)
    Die Entwicklung der Methoden zur Laserkühlung von Atomen hat in den letzten 15 Jahren vielfältige wissenschaftliche Fortschritte erzielt. Ein sich dabei in den letzten Jahren neu entwickelndes Feld ist die Kombination der Laserkühlung mit der zustandsselektiven Anregung von Atomen in Rydberg-Zustände. Ein solches System wird als "gefrorenes Rydberg-Gas" bezeichnet. Dieser Name reflektiert die Tatsache, dass die Experimente mit diesen gekühlten Atomen auf einer Zeitskala ablaufen, auf der die thermische Bewegung zu vernachlässigen ist und nur die Wechselwirkung der Atome untereinander relevant ist. Gelingt es, solche kalten Rydberg-Atome in periodischen Potentialen zu speichern, so ergeben sich Möglichkeiten, dieses System für die Quanteninformationsverarbeitung (QIV) zu nutzen. Zur Untersuchung solcher Systeme wurde im Rahmen dieser Arbeit ein neuer experimenteller Aufbau konzipiert und realisiert. Die dazu aufgebaute Apparatur wurde charakterisiert, indem Untersuchungen zur Laserkühlung von aus einem Dispenser emittierten 87Rb-Atomen in einer magneto-optischen Falle (MOT) durchgeführt wurden. Die hierbei gekühlten Atome wurden anschließend in eine Magnetfalle in Drahtfallengeometrie transferiert und konnten dort magnetisch gespeichert werden. Zur Speicherung von ultrakalten Atomensembles in periodischen Strukturen wurden die Möglichkeiten untersucht, aus periodisch angeordneten stromtragenden Leitern ein Gitter von zwei Magnetfallentypen (Quadrupol- und Ioffe-Pritchard-Fallen) zu konstruieren. Hierzu wurden aufbauend auf einzelnen Segmenten die Möglichkeiten der Konstruktion von Gittern untersucht. Diese Gitter erlauben es, drei verschiedene Grundkonfigurationen von Fallen mit unterschiedlichen Eigenschaften aufzubauen, die theoretisch erläutert werden. Dabei wird auch eine experimentelle Realisierung solcher Gitter mit Quadrupol-Fallen vorgestellt. Hierbei wurde ein Gitter von 4 MOTs experimentell realisiert und untersucht. Im letzten Teil der Arbeit werden Experimente zur 2-Photonen Rydberg-Anregung und hochauflösenden Rydberg-Spektroskopie von 87Rb-Atomen vorgestellt. Hierbei wird zunächst das verwendete Anregungs- und Detektionsschema der Atome erläutert, gefolgt von Untersuchungen zur Stabilität und Leistungsfähigkeit des Lasersytems zur Rydberg-Anregung. Hierzu wurden hochauflösende Spektren in der Umgebung der beiden 41D-Feinstrukturzustände von 87Rb in Abhängigkeit vom elektrischen Feld aufgenommen und die feldabhängige Aufspaltung der Zustände untersucht. Zur Realisierung der erläuterten Schemata zur QIV ist es nötig, einzelne oder Ensembles von Atomen gezielt orts- und zustandsselektiv in Rydberg-Zustände anregen zu können. Erste Demonstrationsexperimente hierzu werden präsentiert. Abschließend wird über die Messung der Rabifrequenz durch Untersuchung der Autler-Townes-Aufspaltung des an das Lichtfeld gekoppelten 5S1/2->5P3/2-Übergangs berichtet.
  • Thumbnail Image
    ItemOpen Access
    Wechselwirkungen in ultrakalten dipolaren Gasen
    (2004) Hensler, Sven; Pfau, Tilman (Prof. Dr.)
    Seit der ersten experimentellen Realisierung eines Bose-Einstein Kondensats (BEC), erfuhr das Feld der atomaren Quantengase eine rasante Entwicklung und stellt heute eines der spannendsten und interdisziplinärsten Feldern in der Atomphysik dar. Die Eigenschaften dieser Gase werden hauptsächlich durch die Wechselwirkung zwischen den Atomen bzw. Molekülen bestimmt, die in den bisher realisierten Kondensaten durch die Kontaktwechselwirkung dominiert wird. Theoretisches und experimentelles Interesse richtet sich seit kurzem auf weitere Wechselwirkungen in diesen entarteten Gasen. Insbesondere wurde die anisotrope und langreichweitige Dipol-Dipol-Wechselwirkung in einem Quantengas, das aus in einem externen Feld ausgerichteten Dipolen besteht, theoretisch untersucht. Im Hinblick auf die Realisierung eines dipolaren atomaren Quantengases stellt Chrom dabei ein äußerst Erfolg versprechendes Element dar. Im Vergleich zu bisherigen BEC-Experimenten, in denen meist Alkali-Atome verwendet wurden, ist die Dipol-Dipol-Wechselwirkung um einen Faktor 36 größer und in seiner Stärke mit der Kontakt-Wechselwirkung vergleichbar. Ein wesentlich stärkeres Dipolmoment wird bei einem im elektrischen Feld ausgerichteten Cr-Rb-Molekül erwartet. In einem solchen Molekülgas wird die Wechselwirkung durch die Dipol-Dipol-Wechselwirkung dominiert. Zur Erzeugung solcher Quantengase wurde in dieser Arbeit ein neuer Aufbau konzipiert und realisiert. Der Schwerpunkt dieser Arbeit liegt auf der Untersuchung ultrakalter, klassischer, bosonischer Cr-Gase, die zur Erzeugung eines dipolaren BECs dienen sollen. Ausgehend von einem lasergekühlten, magnetisch gespeicherten Cr-Ensemble wird in dieser Arbeit die Dipol-Dipol-Wechselwirkung in diesem ultrakalten, dipolaren Gas experimentell studiert. Die theoretische Beschreibung durch die Streuung zweier Dipole führt dabei zu einem sehr allgemeinen Verständnis der Streuprozesse in dipolaren Gasen. In dieser Arbeit wird experimentell und theoretisch gezeigt, dass bereits bei einem magnetischen Moment von sechs Bohrschen Magnetonen aufgrund von dipolaren Relaxationsstößen die Kondensation durch Evaporation der Cr-Atome in einer Magnetfalle nicht möglich ist. Die aus den Streuexperimenten gewonnenen Erkenntnisse bilden nun die Grundlage zur Entwicklung einer sehr aussichtsreichen Strategie. Dabei soll die Kondensation durch Verdampfungskühlen in einer optischen Falle im energetisch tiefsten Zustand der Dipole erfolgen, in dem keine Spinrelaxationsprozesse mehr möglich sind. Durch die Implementation dieses neuen Fallentyps für Cr wird somit eine entscheidende Hürde auf dem Weg zu einem BEC genommen. Obwohl es in dieser Arbeit noch nicht gelingt, die Atome in dieser Falle im energetische tiefsten Zustand zu polarisieren, können zwei Konzepte demonstriert werden, mit denen die Kondensation in diesem Fallentyp erreicht werden kann. Mit ersten Experimente an kombinierten Cr-Rb-Fallen wird in einem weiteren Teil dieser Arbeit ein neues Forschungsprojekt begonnen mit dem Ziel, ein entartetes heteronukleares Molekülgas aus einem zweikomponentigen entarteten Quantengas zu erzeugen. Es werden erste Resultate zum simultanen Betrieb zweier magneto-optischer Fallen (MOT) und dem überlagerten Betrieb von Rb-MOT und Cr-Magnetfalle vorgestellt.
  • Thumbnail Image
    ItemOpen Access
    Optical pumping of a dense quantum gas at its limits : continuous Sisyphus cooling and demagnetization cooling towards degeneracy
    (2013) Volchkov, Valentin V.; Pfau, Tilman (Prof. Dr.)
    In this thesis, I study optical pumping as a powerful cooling tool for trapped ultra-cold atoms in a highly collisional regime. First application of optical pumping is a continuous loading scheme used to transfer atoms from a guided beam into a hybrid trap. Further, I introduce a Sisyphus cooling scheme based on radio-frequency transitions and optical pumping, operating simultaneously to the accumulation of atoms in the trap. The combined scheme of continuous loading and Sisyphus cooling is demonstrated for a large range of initial conditions of the guided atoms. Thereby, I show that collisional thermalization occurs in a steady-state for almost arbitrary initial conditions, provided that the first dissipative step is able to prevent the atom from leaving the trap during its first passage. On the one hand, this scheme could be applied to a wide range of atomic or molecular beams. On the other hand, phase-space density of 4*10^-4 is reached in a continuous operation mode with chromium atoms. In the second part, I investigate demagnetization cooling based on dipolar relaxation collisions driving the thermalization of the internal (spin) and the external (motional) degrees of freedom. In the case of a gas, one has the advantage that the spin degree of freedom can be cooled very efficiently using optical pumping. It is shown, that demagnetization cooling of a gas is more efficient than evaporation cooling in terms of phase-space density gain versus loss of atoms. This allows reaching a temperature of 6uK at a phase-space density of 0.03. It is observed, that both, continuous Sisyphus cooling and demagnetization cooling are limited by a density dependent loss mechanism. I present circumstantial evidence for excited-state collisions as the dominant limiting process. Finally, I discuss possible extensions to the current experimental procedures, possibly allowing reaching quantum degeneracy by optical means only.