08 Fakultät Mathematik und Physik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9

Browse

Search Results

Now showing 1 - 10 of 142
  • Thumbnail Image
    ItemOpen Access
    The role of dimensionality and geometry in quench-induced nonequilibrium forces
    (2021) Nejad, Mehrana Raeisian; Khalilian, Hamidreza; Rohwer, Christian M.; Moghaddam, Ali Ghorbanzadeh
    We present an analytical formalism, supported by numerical simulations, for studying forces that act on curved walls following temperature quenches of the surrounding ideal Brownian fluid. We show that, for curved surfaces, the post-quench forces initially evolve rapidly to an extremal value, whereafter they approach their steady state value algebraically in time. In contrast to the previously-studied case of flat boundaries (lines or planes), the algebraic decay for curved geometries depends on the dimension of the system. Specifically, steady-state values of the force are approached in time as t-d/2 in d-dimensional spherical (curved) geometries. For systems consisting of concentric circles or spheres, the exponent does not change for the force on the outer circle or sphere. However, the force exerted on the inner circles or sphere experiences an overshoot and, as a result, does not evolve to the steady state in a simple algebraic manner. The extremal value of the force also depends on the dimension of the system, and originates from curved boundaries and the fact that particles inside a sphere or circle are locally more confined, and diffuse less freely than particles outside the circle or sphere.
  • Thumbnail Image
    ItemOpen Access
    Tailored nanocomposites for 3D printed micro-optics
    (2020) Weber, Ksenia; Werdehausen, Daniel; König, Peter; Thiele, Simon; Schmid, Michael; Decker, Manuel; Oliveira, Peter William de; Herkommer, Alois; Giessen, Harald
  • Thumbnail Image
    ItemOpen Access
    Bell-state measurement exceeding 50% success probability with linear optics
    (2023) Bayerbach, Matthias J.; D’Aurelio, Simone E.; Loock, Peter van; Barz, Stefanie
  • Thumbnail Image
    ItemOpen Access
    Tuning charge order in (TMTTF)2X by partial anion substitution
    (2021) Pustogow, Andrej; Dizdarevic, Daniel; Erfort, Sebastian; Iakutkina, Olga; Merkl, Valentino; Untereiner, Gabriele; Dressel, Martin
    In the quasi-one-dimensional (TMTTF)2X compounds with effectively quarter-filled bands, electronic charge order is stabilized from the delicate interplay of Coulomb repulsion and electronic bandwidth. The correlation strength is commonly tuned by physical pressure or chemical substitution with stoichiometric ratios of anions and cations. Here, we investigate the charge-ordered state through partial substitution of the anions in (TMTTF)2[AsF6]1-x[SbF6]x with x≈0.3, determined from the intensity of infrared vibrations, which is sufficient to suppress the spin-Peierls state. Our dc transport experiments reveal a transition temperature TCO = 120 K and charge gap ΔCO=430 K between the values of the two parent compounds (TMTTF)2AsF6 and (TMTTF)2SbF6. Upon plotting the two parameters for different (TMTTF)2X, we find a universal relationship between TCO and ΔCO yielding that the energy gap vanishes for transition temperatures TCO≤60 K. While these quantities indicate that the macroscopic correlation strength is continuously tuned, our vibrational spectroscopy results probing the local charge disproportionation suggest that 2δ is modulated on a microscopic level.
  • Thumbnail Image
    ItemOpen Access
    A brief review of capillary number and its use in capillary desaturation curves
    (2022) Guo, Hu; Song, Kaoping; Hilfer, R.
    Capillary number, understood as the ratio of viscous force to capillary force, is one of the most important parameters in enhanced oil recovery (EOR). It continues to attract the interest of scientists and engineers, because the nature and quantification of macroscopic capillary forces remain controversial. At least 41 different capillary numbers have been collected here from the literature. The ratio of viscous and capillary force enters crucially into capillary desaturation experiments. Although the ratio is length scale dependent, not all definitions of capillary number depend on length scale, indicating potential inconsistencies between various applications and publications. Recently, new numbers have appeared and the subject continues to be actively discussed. Therefore, a short review seems appropriate and pertinent.
  • Thumbnail Image
    ItemOpen Access
    Heterodyne sensing of microwaves with a quantum sensor
    (2021) Meinel, Jonas; Vorobyov, Vadim; Yavkin, Boris; Dasari, Durga; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Wrachtrup, Jörg
    Diamond quantum sensors are sensitive to weak microwave magnetic fields resonant to the spin transitions. However, the spectral resolution in such protocols is ultimately limited by the sensor lifetime. Here, we demonstrate a heterodyne detection method for microwaves (MW) leading to a lifetime independent spectral resolution in the GHz range. We reference the MW signal to a local oscillator by generating the initial superposition state from a coherent source. Experimentally, we achieve a spectral resolution below 1 Hz for a 4 GHz signal far below the sensor lifetime limit of kilohertz. Furthermore, we show control over the interaction of the MW-field with the two-level system by applying dressing fields, pulsed Mollow absorption and Floquet dynamics under strong longitudinal radio frequency drive. While pulsed Mollow absorption leads to improved sensitivity, the Floquet dynamics allow robust control, independent from the system’s resonance frequency. Our work is important for future studies in sensing weak microwave signals in a wide frequency range with high spectral resolution.
  • Thumbnail Image
    ItemOpen Access
    High space‐bandwidth‐product (SBP) hologram carriers toward photorealistic 3D holography
    (2024) Li, Jin; Li, Xiaoxun; Huang, Xiangyu; Kaissner, Robin; Neubrech, Frank; Sun, Shuo; Liu, Na
    3D holography capable of reproducing all necessary visual cues is considered the most promising route to present photorealistic 3D images. Three elements involving computer‐generated hologram (CGH) algorithms, hologram carriers, and optical systems are prerequisites to create high‐quality holographic displays for photorealistic 3D holography. Especially, the hologram carrier directly determines the holographic display capability and the design of high space‐bandwidth‐product (SBP) optical systems. Currently, two categories of hologram carriers, i.e., spatial light modulators (SLM) and metasurfaces, are regarded as promising candidates for photorealistic 3D holography. However, most of their SBP capability still cannot match the amount of information generated by the CGH. To address this issue, tremendous efforts are made to improve the capability of hologram carriers. Here, the main hologram carriers (from SLM to metasurfaces) that are widely utilized in holography systems to achieve high SBP capability (high resolution, wide viewing angles, and large sizes) are reviewed. The purpose of this review is to identify the key challenges and future directions of SLM‐based and metasurface‐based holography for photorealistic 3D holographic images.
  • Thumbnail Image
    ItemOpen Access
    An approximation of solutions to heat equations defined by generalized measure theoretic Laplacians
    (2020) Ehnes, Tim; Hambly, Ben
    We consider the heat equation defined by a generalized measure theoretic Laplacian on [0, 1]. This equation describes heat diffusion in a bar such that the mass distribution of the bar is given by a non-atomic Borel probabiliy measure μ, where we do not assume the existence of a strictly positive mass density. We show that weak measure convergence implies convergence of the corresponding generalized Laplacians in the strong resolvent sense. We prove that strong semigroup convergence with respect to the uniform norm follows, which implies uniform convergence of solutions to the corresponding heat equations. This provides, for example, an interpretation for the mathematical model of heat diffusion on a bar with gaps in that the solution to the corresponding heat equation behaves approximately like the heat flow on a bar with sufficiently small mass on these gaps.
  • Thumbnail Image
    ItemOpen Access
    Werner Eissner (1930-2022) : a pioneer in computational atomic physics
    (2023) Bhatia, Anand K.; Lynas-Gray, Anthony E.; Mendoza, Claudio; Nahar, Sultana; Nussbaumer, Harry; Pradhan, Anil K.; Seaton, Anthony M.; Wunner, Günter; Zeippen, Claude J.
  • Thumbnail Image
    ItemOpen Access
    Vibrational quenching of weakly bound cold molecular ions immersed in their parent gas
    (2020) Jachymski, Krzysztof; Meinert, Florian
    Hybrid ion–atom systems provide an excellent platform for studies of state-resolved quantum chemistry at low temperatures, where quantum effects may be prevalent. Here we study theoretically the process of vibrational relaxation of an initially weakly bound molecular ion due to collisions with the background gas atoms. We show that this inelastic process is governed by the universal long-range part of the interaction potential, which allows for using simplified model potentials applicable to multiple atomic species. The product distribution after the collision can be estimated by making use of the distorted wave Born approximation. We find that the inelastic collisions lead predominantly to small changes in the binding energy of the molecular ion.