08 Fakultät Mathematik und Physik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    ItemOpen Access
    Actions of compact groups on spheres and on generalized quadrangles
    (1999) Biller, Harald; Stroppel, Markus (PD Dr.)
    Alle Wirkungen kompakter zusammenhängender Gruppen von genügend großer Dimension auf Sphären und auf zwei Arten von verallgemeinerten Vierecken werden im einzelnen beschrieben. Für Sphären läßt sich das Ergebnis wie folgt zusammenfassen: Jede treue stetige Wirkung einer kompakten zusammenhängenden Gruppe, deren Dimension 1 + dim SO(n-2) übersteigt, auf einer n-Sphäre ist linear, also äquivalent zur natürlichen Wirkung einer Untergruppe von SO(n+1). Unter ähnlichen Voraussetzungen untersuchen wir Wirkungen auf endlichdimensionalen kompakten verallgemeinerten Vierecken, deren Punktreihen Dimension 1 oder 4 haben. Hier zeigen wir, daß jede treue Wirkung einer kompakten Gruppe von genügend großer Dimension äquivalent ist zu einer Wirkung auf einem Moufang-Viereck, also auf einer Nebenklassengeometrie einer einfachen Lie-Gruppe, die durch ein BN-Paar beschrieben wird. Die vorliegende Arbeit steht in der Tradition der Untersuchung kompakter projektiver Ebenen und neuerdings anderer kompakter verallgemeinerter Polygone durch Salzmann und seine Schule. Der dabei entstandene Leitgedanke, nur die Wirkung einer Gruppe von genügend großer Dimension vorauszusetzen, wird in dieser Arbeit erstmals für verallgemeinerte Vierecke durchgeführt. Wir setzen zusätzlich voraus, daß die Gruppe kompakt ist, um die hochentwickelte Theorie der Wirkungen kompakter Gruppen auf (Kohomologie-) Mannigfaltigkeiten für die topologische Inzidenzgeometrie weiter zu erschließen. Umgekehrt ermöglicht erst die spezifische Salzmannsche Fragestellung die Ergebnisse über Sphären, die ja dem Bereich der klassischen Theorie angehören. Indem die Klassifikation der kompakten Lie-Gruppen konsequent ausgenutzt wird, läßt sich das Problem auf die Behandlung weniger Serien von Gruppen zurückführen. Bei verallgemeinerten Vierecken zeigt man dagegen zuerst die Transitivität der Wirkung und benutzt dann die bestehende (teilweise hier neu bewiesene) Klassifikation.