08 Fakultät Mathematik und Physik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    Coupled simulations and parameter inversion for neural system and electrophysiological muscle models
    (2024) Homs‐Pons, Carme; Lautenschlager, Robin; Schmid, Laura; Ernst, Jennifer; Göddeke, Dominik; Röhrle, Oliver; Schulte, Miriam
    The functioning of the neuromuscular system is an important factor for quality of life. With the aim of restoring neuromuscular function after limb amputation, novel clinical techniques such as the agonist‐antagonist myoneural interface (AMI) are being developed. In this technique, the residual muscles of an agonist‐antagonist pair are (re‐)connected via a tendon in order to restore their mechanical and neural interaction. Due to the complexity of the system, the AMI can substantially profit from in silico analysis, in particular to determine the prestretch of the residual muscles that is applied during the procedure and determines the range of motion of the residual muscle pair. We present our computational approach to facilitate this. We extend a detailed multi‐X model for single muscles to the AMI setup, that is, a two‐muscle‐one‐tendon system. The model considers subcellular processes as well as 3D muscle and tendon mechanics and is prepared for neural process simulation. It is solved on high performance computing systems. We present simulation results that show (i) the performance of our numerical coupling between muscles and tendon and (ii) a qualitatively correct dependence of the range of motion of muscles on their prestretch. Simultaneously, we pursue a Bayesian parameter inference approach to invert for parameters of interest. Our approach is independent of the underlying muscle model and represents a first step toward parameter optimization, for instance, finding the prestretch, to be applied during surgery, that maximizes the resulting range of motion. Since our multi‐X fine‐grained model is computationally expensive, we present inversion results for reduced Hill‐type models. Our numerical results for cases with known ground truth show the convergence and robustness of our approach.
  • Thumbnail Image
    ItemOpen Access
    Optimizing NV magnetometry for magnetoneurography and magnetomyography applications
    (2023) Zhang, Chen; Zhang, Jixing; Widmann, Matthias; Benke, Magnus; Kübler, Michael; Dasari, Durga; Klotz, Thomas; Gizzi, Leonardo; Röhrle, Oliver; Brenner, Philipp; Wrachtrup, Jörg
    Magnetometers based on color centers in diamond are setting new frontiers for sensing capabilities due to their combined extraordinary performances in sensitivity, bandwidth, dynamic range, and spatial resolution, with stable operability in a wide range of conditions ranging from room to low temperatures. This has allowed for its wide range of applications, from biology and chemical studies to industrial applications. Among the many, sensing of bio-magnetic fields from muscular and neurophysiology has been one of the most attractive applications for NV magnetometry due to its compact and proximal sensing capability. Although SQUID magnetometers and optically pumped magnetometers (OPM) have made huge progress in Magnetomyography (MMG) and Magnetoneurography (MNG), exploring the same with NV magnetometry is scant at best. Given the room temperature operability and gradiometric applications of the NV magnetometer, it could be highly sensitive in the pT/Hz-range even without magnetic shielding, bringing it close to industrial applications. The presented work here elaborates on the performance metrics of these magnetometers to the state-of-the-art techniques by analyzing the sensitivity, dynamic range, and bandwidth, and discusses the potential benefits of using NV magnetometers for MMG and MNG applications.