08 Fakultät Mathematik und Physik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9
Browse
36 results
Search Results
Item Open Access Classical and semiclassical approaches to excitons in cuprous oxide(2024) Ertl, Jan; Main, Jörg (Prof. Dr.)When an electron is excited from the valence into the conduction band it leaves behind a positively charged hole in the valence band to which it can couple through the Coulomb interaction. Bound states of electrons and holes, the excitons, are the solid state analogue of the hydrogen atom. As such they follow a Rydberg series. T. Kazimierczuk et al. [Nature 514, 343 (2014)] were able to show the existence of Rydberg excitons in cuprous oxide up to principle quantum number n=25. These states then have extensions in the µm range and thus lie in a region where the correspondence principle is applicable and quantum mechanics turns into classical mechanics. A more precise study of experimental spectra reveals significant deviations from a purely hydrogen-like behavior. These deviations can be traced to the complex valence band structure of cuprous oxide which inherits the cubic symmetry of the system. A theoretical description of the band structure introduces new degrees of freedom, i.e., a quasispin I=1 describing the three-fold degenerate valence band. Due to the coupling of quasispin and hole spin the valence band splits resulting in a yellow exciton series and two green exciton series with light and heavy holes. In this thesis we provide a semiclassical interpretation for excitons in cuprous oxide beyond the hydrogen-like model. To this end we introduce an adiabatic approach diagonalizing the band structure part of the Hamiltonian in a basis for quasi- and hole spin. This leads to a description via energy surfaces in momentum space, which correspond to the different exciton series. Classical dynamics can be calculated by choosing the energy surface of the series under interest and integrating Hamilton's equations of motion. Due to the energy surfaces the symmetry is drastically reduced compared to the hydrogen-like problem now allowing for the existence of fully three-dimensional orbits as well as the possibility of chaotic dynamics. For the yellow exciton series we find mostly regular phase space regions with quasi-periodic motion on near-integrable tori and small chaotic phase space regions. To demonstrate the existence of classical exciton orbits in the quantum spectra we show that the quantum mechanical recurrence spectra exhibit peaks, which, by application of semiclassical theories and a scaling transformation, can be directly related to classical periodic exciton orbits. An analysis of the energy dependence reveals that the dynamics deviations' from a purely hydrogen-like behavior increase with decreasing energy. Starting from the full Hamiltonian we develop a spherical model from which we are able to derive the quantum defects of the yellow exciton series using a semiclassical torus quantization. A comparison with quantum mechanical calculations show good agreement with our semiclassical results, thus allowing to identify individual quantum states by a corresponding classical exciton orbit in analogy to Bohr's atomic model. Finally, we provide a comparison of yellow exciton series with the two distinct green exciton series. The phase space is analyzed by application of Poincaré surfaces of section and Lagrangian descriptors. In addition, we investigate the Lyapunov stability of individual orbits. The analysis reveals the existence of a classically chaotic exciton dynamics for both yellow and green excitons, however, the chaotic regions are more pronounced for the green than for the yellow excitons. Excitons in cuprous oxide thus provide an example of a two-particle system with chaos even without the application of external fields.Item Open Access Werner Eissner (1930-2022) : a pioneer in computational atomic physics(2023) Bhatia, Anand K.; Lynas-Gray, Anthony E.; Mendoza, Claudio; Nahar, Sultana; Nussbaumer, Harry; Pradhan, Anil K.; Seaton, Anthony M.; Wunner, Günter; Zeippen, Claude J.Item Open Access Predictions of a galactic outflow model for spectral mapping observations(2021) Schaible, Anna LenaGalactically scaled outfows are regarded as extremely important for many aspects and processes of galaxy evolution. This thesis focuses on galactic winds and enables the analysis of spatial resolved spherical galactic outflows. For the frst time, a method to calculate 3D datacubes for galactic outflows is presented. Spatially resolved spectra of outflows are predicted.Item Open Access Bound states in the continuum in cuprous oxide quantum wells(2024) Aslanidis, AngelosExcitons were first introduced in the 1930s by J. A. Frenkel, as the quanta of the excitation of an electron in a semiconductor. When an electron in a semiconductor is excited, it leaves behind a positively charged electron hole. The electron and hole, bound by the Coulomb force, form a quasi-particle known as an exciton. This exciton, made up of both a negative and a positive charge, can be thought of as the solid-state analog of a hydrogen atom. The first experimental observation of excitons was made by Gross and Karryev in Cu2O in 1952. This thesis specifically explores Wannier-Mott excitons. Due to different bandgaps of the adjoint materials, the exciton can be considered trapped in a quantum potential well. Moreover, the higher quantum-confinement subbands couple with the continuum of the lower ones, resulting in resonance states above the scattering threshold. Under certain circumstances, some resonance states appear to have an infinite lifetime, which means these states are bound. These so-called bound states in the continuum (BIC) are the main subject of this thesis. They will be further investigated by approximating an exciton trapped in a cuprous oxide quantum well through quantum defect theory (QDT) and comparing it with numerically precise calculations based on a large B-spline basis. First, there will be a theoretical introduction to excitons in general. Further, the QDT will be explained, and the method of approximating the system will be detailed. After that, the method of approximating the wavefunctions in a B-spline basis together with the complex-coordinate-rotation method will be explained. Lastly, the results of both methods will be compared and discussed.Item Open Access Lagrange-Deskriptor-Analyse der klassischen Dynamik von Satelliten in Sonne-Planet-Mond-Systemen(2023) Oguz, NihatMithilfe der Himmelsmechanik ist es möglich, das Verhalten von Himmelskörpern und Satelliten in ihren Gravitationsfeldern zu untersuchen. Bildet sich durch diese Körper ein Mehrkörperproblem, wird dieses durch mathematische Formulierungen der wirkenden Kräfte sowie Bewegungsgleichungen beschrieben und je nach Möglichkeit werden die Orbits analytisch oder numerisch berechnet und ausgewertet. Dabei ist zu beobachten, dass sich die Orbits unterscheiden und außergewöhnliche Eigenschaften besitzen können. Hierbei ist das Verständnis der Dynamik wichtig, um passende Orbits, unter anderem Transferorbits, für natürliche und künstliche Satelliten zu bestimmen, die sich in der Nähe der Lagrangepunkte befinden. In dieser Arbeit wird das System bestehend aus dem Stern, dem Planeten, dem Mond und dem Satelliten, der sich in der Nähe von den Lagrangepunkten befindet, untersucht. Dazu wird das Verhalten von Satelliten an diesen Orten untersucht und Trajektorien sowie Lagrangedeskriptoren an Positionen mit unterschiedlichen Anfangsbedingungen berechnet. Die Lagrangedeskriptoren werden hierbei genutzt, um Strukturen in Phasenräumen aufzudecken. Außerdem wird der Einfluss des Mondes auf die Dynamik betrachtet.Item Open Access Fluctuations and correlations of quantum heat engines(2020) Denzler, Tobias; Lutz, Eric (Prof. Dr.)In this work we study the effect of quantum and thermal fluctuations on the statistics of quantum heat engine performance parameters, like efficiency and power. We begin by deriving an explicit solution for the characteristic function of the heat distribution of a thermal quantum harmonic oscillator. We then derive a general framework based on the standard two-point-measurement scheme to compute the efficiency distribution of a quantum Otto cycle. We analyze the generic properties of this distribution for scale-invariant driving Hamiltonians which describe a large class of single-particle, many-body, and nonlinear systems. We find that the efficiency is deterministic and that its mean is equal to the macroscopic efficiency for adiabatic driving. We continue our research by studying the efficiency large deviation function of two exemplary quantum heat engines, the harmonic oscillator and the two-level Otto cycles. While the efficiency statistics follow the ’universal’ theory of Verley et al. [Nature Commun. 5, 4721 (2014)] for nonadiabatic driving, we find that the latter framework does not apply in the adiabatic regime. We can relate this unusual property to the perfect anticorrelation between work output and heat input that suppresses thermal as well as quantum fluctuations. We then probe our findings in an experimental NMR setup using spin-1/2 systems and find them to agree rather well with our theoretical predictions. Afterward, we move on to the finite-time quantum Carnot cycle and investigate its power fluctuations. In particular, we consider how level degeneracy and level number, two commonly found properties in quantum systems, influence the relative work fluctuations. We find that their optimal performance may surpass those of nondegenerate two-level engines or harmonic oscillator motors. Our results highlight that these parameters can be employed to realize high-performance, high-stability cyclic quantum heat engines.Item Open Access Theory of yellow and green excitons in cuprous oxide with emphasis on correction terms and external fields(2022) Rommel, Patric; Main, Jörg (Prof. Dr.)Cuprous oxide has played a central role in the history of exciton physics, being the semiconductor where excitons were first experimentally discovered. Excitons formed from an electron in its lowest conduction band and a hole from its the highest valence band belong to the yellow exciton series. Recently, optical absorption experiments have followed this series up to principal quantum number n = 25 [T. Kazimierczuk et al., Nature 514, 343 (2014)]. This opens up possibilities for novel applications using the particular attributes of highly excited Rydberg system, for example in quantum information processing. For this, the properties of the excitons have to be understood thoroughly. In this thesis, we aim to advance the theoretical knowledge of the yellow and green exciton series in cuprous oxide. We use numerical simulation and analytical methods to investigate in detail the exchange splitting of the S states, the fine structure splitting of the D excitons, spectra in external magnetic fields in Faraday and Voigt configuration, second harmonic generation in forbidden directions, and autoionizing spectra in external electric and parallel magnetic and electric fields. For the latter, we apply the complex-coordinate-rotation method, which we then further use to calculate the green exciton resonances lying in the yellow continuum. We present absorption spectra for transitions from the crystal ground state and for interseries transitions from the yellow to the green series.Item Open Access Klassische Dynamik der grünen Exzitonen in Kupferoxydul(2023) Rentschler, SebastianExzitonen sind in der Festkörperphysik bedeutende Quasiteilchen. Sie entstehen im Halbleiter und setzen sich aus einem negativ geladenen Elektron aus dem Leitungsband und einem positiv geladenen Loch aus dem Valenzband zusammen. Das positiv geladene Loch im Valenzband entsteht aus dem zurückgelassenen Platz des Elektron, das sich jetzt im Leitungsband befindet. Zwischen dem Elektron und dem Loch herrscht eine Coulomb-Wechselwirkung. Die experimentellen Ergebnisse für Exzitonen bis zu n=25 für die gelbe Serie lieferten erstmals 2014 Kazimierczuk et al.. Eine Forschungsgruppe aus Schweden fand experimentell heraus, dass Rydberg-Exzitonen in Kupferoxydul bis zu einer Hauptquantenzahl von n=30 wasserstoffähnliches Verhalten aufweisen. Exzitonen mit hoher Hauptquantenzahl haben eine größere Ausdehnung und demnach auch eine größere Ausdehnung im Phasenraum. Das Elektronen-Loch-Paar, das sich um einen gemeinsamen Schwerpunkt bewegt, kann als ein Zwei-Körper-Problem betrachtet werden. In Analogie zu einem klassischen Zwei-Körper-Problem, bei dem zwei Massen über die Gravitation wechselwirken, kann intuitiv die Bewegung des Elektrons klassisch untersucht werden. Der Vorteil hierbei ist, dass ein quantenmechanisches Problem in einer klassischen Betrachtung veranschaulicht und verstanden werden kann. In der Arbeit von Michel Mom wurde bereits die klassische Dynamik der gelben Exzitonen bei einer Energie, die im wasserstoffartigen Fall einer Hauptquantenzahl von n=5 entsprechen würde, untersucht. Dieselbe Energie kann auch für die grüne Serie untersucht werden. Hier muss zusätzlich die Energieschwelle für die grüne Serie berücksichtigt werden. Hier wird die Dynamik in den Symmetrieebenen untersucht. Die Symmetrie des Kristallgitters für Kupferoxydul ist die O_h-Gruppe, also eine kubischen Symmetrie. Das Ziel dieser Arbeit ist es, die Phasenräume in den Symmetrieebenen zu erstellen und somit einen Überblick über die Dynamik der grünen Exzitonen in diesen Ebenen zu bekommen. Die Phasenräume geben Auskunft über reguläre oder chaotische Dynamik im System. Neben den Phasenräumen werden zusätzlich die Bahnen genauer untersucht werden. Es wird untersucht, wie sich die Kristallstruktur auf die klassische Bewegung auswirken und wie diese aussieht. Die Ergebnisse lassen sich anschließend mit den Ergebnissen der gelben Serie vergleichen. Um einen weiteren Vergleich zu erhalten, wird die Energie so reduziert, dass diese beim Wasserstofffall einer Hauptquantenzahl von n=1 entsprechen würde. Für diesen Fall werden erneut die Phasenräume und Bahnen untersucht und mit den Ergebnissen für n=5 verglichen.Item Open Access Einfluss der Spin-Bahn-Kopplung auf die Abstandsverteilung der Exzitonenzustände in Kupferoxydul(2022) Schönleber, MarcoIn der Festkörperphysik werden die Energien der Elektronen durch Bänder beschrieben. Dabei ist es möglich, ein einzelnes Elektron so anzuregen, dass es vom Valenz- ins Leitungsband übergeht. Die entstehende Coulombwechselwirkung zwischen dem im Valenzband verbliebenen Loch und dem angeregten Elektron führt zur Ausbildung wasserstoffartiger, gebundener Zustände, die als Exzitonen bezeichnet werden. Die in den 1930er Jahren theoretisch beschriebenen Zustände konnten in den 1950er Jahren zum ersten Mal nachgewiesen werden. Das dabei verwendete Kupferoxydul stellt ein besonders interessantes Material zur Untersuchung von Exzitonen dar. Nicht nur war es das erste Material in dem Exzitonen nachgewiesen wurden, in der jüngeren Vergangenheit konnten auch Zustände sehr hoher Hauptquantenzahlen experimentell aufgelöst werden. Die theoretische Beschreibung der Exzitonen für diesen Festkörper ist folglich von gesteigertem Interesse. Diese ist im Vergleich zum Wasserstoffatom jedoch deutlich komplexer, da der Kristall nur eine Oh-Symmetrie besitzt. Es müssen also sowohl die Bandstruktur als auch die Interaktion zwischen den Zuständen die aus unterschiedlichen Bändern gebildet werden in die Berechnung der Spektren einfließen, wodurch chaotische Strukturen ermöglicht werden. In vorangegangenen Arbeiten wurde bereits untersucht, wie sich die Verteilung der Zustände unter Einfluss von äußeren elektrischen und magnetischen Feldern verhält. Dabei konnte gezeigt werden, dass die Verteilung der Abstände einem Muster folgt, das aus der theoretischen Beschreibung des Quantenchaos bekannt ist. Hierfür wurden skalierte Spektren unter Variation eines Kontrollparameters untersucht, der die Stärke der angelegten Felder bestimmt. Vor kurzem wurde zudem untersucht, welchen Einfluss die Wechselwirkung der über unterschiedliche Bänder bestimmten Exzitonenserien auf die Spektren im Vergleich zur semiklassisch bestimmten Dynamik haben. Hierbei wurde zur Skalierung ein Kontrollparameter eingeführt, der die Stärke der Ankopplung zwischen den Exziton-Serien reguliert, die aus Elektronen aus dem niedrigsten Leitungsband und den beiden über einen Quasispin beschriebenen Valenzbändern gebildet werden. In der vorliegenden Arbeit wird nun untersucht, welchen Einfluss diese skalierte Spin-Bahn-Kopplung auf die Levelstatistik der Exzitonenzustände hat. Hierbei wird sowohl der entstehende Einfluss auf das Spektrum visualisiert als auch mit statistischen Methoden analysiert. Dabei wird die Nächster-Nachbar-Verteilung des Spektrums in Abhängigkeit von einem Kontrollparameter mithilfe einer Brody-Verteilung gefittet, welche einen Übergang von Poisson-Statistik zu GOE-Statistik beschreibt. Hierdurch wird untersucht, wie sehr das Spektrum auf reguläres oder chaotisches Verhalten hindeutet.Item Open Access Impact of the valence band structure of cuprous oxide for excitons in quantum wells(2023) Pfeiffer, FriederExcitons, postulated in the 1930s, play an important role in the fundamental research of optical properties of semiconductors and insulators. While previous research at ITP1 has mainly focused on excitons in the bulk, this bachelor thesis deals with an additional spatial boundary of the crystal, the Quantum Wells. The bound states of electron and hole can be described as hydrogen-like in a first approximation. An already implemented algorithm serves as a numerical solution approach for a hydrogen-like description of the exciton, containing Quantum Wells. For a more detailed description of the exciton states, however, the crystal structure must also be taken into account. As a known ansatz to consider the band structure of cuprous oxide, the Suzuki-Hensel-Hamiltonian is chosen, where the free parameters are determined by a fit of the Hamiltonian to a simulated band structure. Since the band structure and Quantum Wells break several important symmetries and additionally create new degrees of freedom through a spin-orbit coupling a naive diagonalisation of the resulting Hamiltonian with the already known algorithm would not provide adequate computing time. Therefore both the algorithm and the Hamiltonian must first be modified. The numerical optimisation is applied simultaneously in another bachelor thesis at the ITP1. This bachelor thesis, on the other hand, deals with an analytical consideration of the Hamiltonian. The aim is to reduce the degrees of freedom of the Hamiltonian by using the remaining symmetries, and thus to minimise the required computing time for the numerical diagonalisation.