08 Fakultät Mathematik und Physik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    ItemOpen Access
    Numerical study of the thermodynamic uncertainty relation for the KPZ-equation
    (2021) Niggemann, Oliver; Seifert, Udo
    A general framework for the field-theoretic thermodynamic uncertainty relation was recently proposed and illustrated with the (1+1) dimensional Kardar-Parisi-Zhang equation. In the present paper, the analytical results obtained there in the weak coupling limit are tested via a direct numerical simulation of the KPZ equation with good agreement. The accuracy of the numerical results varies with the respective choice of discretization of the KPZ non-linearity. Whereas the numerical simulations strongly support the analytical predictions, an inherent limitation to the accuracy of the approximation to the total entropy production is found. In an analytical treatment of a generalized discretization of the KPZ non-linearity, the origin of this limitation is explained and shown to be an intrinsic property of the employed discretization scheme.
  • Thumbnail Image
    ItemOpen Access
    The two scaling regimes of the thermodynamic uncertainty relation for the KPZ-equation
    (2021) Niggemann, Oliver; Seifert, Udo
    We investigate the thermodynamic uncertainty relation for the (1+1) dimensional Kardar-Parisi-Zhang (KPZ) equation on a finite spatial interval. In particular, we extend the results for small coupling strengths obtained previously to large values of the coupling parameter. It will be shown that, due to the scaling behavior of the KPZ equation, the thermodynamic uncertainty relation (TUR) product displays two distinct regimes which are separated by a critical value of an effective coupling parameter. The asymptotic behavior below and above the critical threshold is explored analytically. For small coupling, we determine this product perturbatively including the fourth order; for strong coupling we employ a dynamical renormalization group approach. Whereas the TUR product approaches a value of 5 in the weak coupling limit, it asymptotically displays a linear increase with the coupling parameter for strong couplings. The analytical results are then compared to direct numerical simulations of the KPZ equation showing convincing agreement.
  • Thumbnail Image
    ItemOpen Access
    Field-theoretic thermodynamic uncertainty relation : general formulation exemplified with the Kardar-Parisi-Zhang equation
    (2020) Niggemann, Oliver; Seifert, Udo
    We propose a field-theoretic thermodynamic uncertainty relation as an extension of the one derived so far for a Markovian dynamics on a discrete set of states and for overdamped Langevin equations. We first formulate a framework which describes quantities like current, entropy production and diffusivity in the case of a generic field theory. We will then apply this general setting to the one-dimensional Kardar-Parisi-Zhang equation, a paradigmatic example of a non-linear field-theoretic Langevin equation. In particular, we will treat the dimensionless Kardar-Parisi-Zhang equation with an effective coupling parameter measuring the strength of the non-linearity. It will be shown that a field-theoretic thermodynamic uncertainty relation holds up to second order in a perturbation expansion with respect to a small effective coupling constant. The calculations show that the field-theoretic variant of the thermodynamic uncertainty relation is not saturated for the case of the Kardar-Parisi-Zhang equation due to an excess term stemming from its non-linearity.