08 Fakultät Mathematik und Physik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9
Browse
4 results
Search Results
Item Open Access The role of dimensionality and geometry in quench-induced nonequilibrium forces(2021) Nejad, Mehrana Raeisian; Khalilian, Hamidreza; Rohwer, Christian M.; Moghaddam, Ali GhorbanzadehWe present an analytical formalism, supported by numerical simulations, for studying forces that act on curved walls following temperature quenches of the surrounding ideal Brownian fluid. We show that, for curved surfaces, the post-quench forces initially evolve rapidly to an extremal value, whereafter they approach their steady state value algebraically in time. In contrast to the previously-studied case of flat boundaries (lines or planes), the algebraic decay for curved geometries depends on the dimension of the system. Specifically, steady-state values of the force are approached in time as t-d/2 in d-dimensional spherical (curved) geometries. For systems consisting of concentric circles or spheres, the exponent does not change for the force on the outer circle or sphere. However, the force exerted on the inner circles or sphere experiences an overshoot and, as a result, does not evolve to the steady state in a simple algebraic manner. The extremal value of the force also depends on the dimension of the system, and originates from curved boundaries and the fact that particles inside a sphere or circle are locally more confined, and diffuse less freely than particles outside the circle or sphere.Item Open Access Ionic liquids in conducting nanoslits : how important is the range of the screened electrostatic interactions?(2022) Groda, Yaroslav; Dudka, Maxym; Oshanin, Gleb; Kornyshev, Alexei A.; Kondrat, SvyatoslavAnalytical models for capacitive energy storage in nanopores attract growing interest as they can provide in-depth analytical insights into charging mechanisms. So far, such approaches have been limited to models with nearest-neighbor interactions. This assumption is seemingly justified due to a strong screening of inter-ionic interactions in narrow conducting pores. However, how important is the extent of these interactions? Does it affect the energy storage and phase behavior of confined ionic liquids? Herein, we address these questions using a two-dimensional lattice model with next-nearest and further neighbor interactions developed to describe ionic liquids in conducting slit confinements. With simulations and analytical calculations, we find that next-nearest interactions enhance capacitance and stored energy densities and may considerably affect the phase behavior. In particular, in some range of voltages, we reveal the emergence of large-scale mesophases that have not been reported before but may play an important role in energy storage.Item Open Access Axisymmetric spheroidal squirmers and self-diffusiophoretic particles(2020) Pöhnl, Ruben; Popescu, Mihail Nicolae; Uspal, William E.We study, by means of an exact analytical solution, the motion of a spheroidal, axisymmetric squirmer in an unbounded fluid, as well as the low Reynolds number hydrodynamic flow associated to it. In contrast to the case of a spherical squirmer - for which, e.g. the velocity of the squirmer and the magnitude of the stresslet associated with the flow induced by the squirmer are respectively determined by the amplitudes of the first two slip (‘squirming’) modes - for the spheroidal squirmer each squirming mode either contributes to the velocity, or contributes to the stresslet. The results are straightforwardly extended to the self-phoresis of axisymmetric, spheroidal, chemically active particles in the case when the phoretic slip approximation holds.Item Open Access How to speed up ion transport in nanopores(2020) Breitsprecher, Konrad; Janssen, Mathijs; Srimuk, Pattarachai; Mehdi, B. Layla; Presser, Volker; Holm, Christian; Kondrat, SvyatoslavElectrolyte-filled subnanometre pores exhibit exciting physics and play an increasingly important role in science and technology. In supercapacitors, for instance, ultranarrow pores provide excellent capacitive characteristics. However, ions experience difficulties in entering and leaving such pores, which slows down charging and discharging processes. In an earlier work we showed for a simple model that a slow voltage sweep charges ultranarrow pores quicker than an abrupt voltage step. A slowly applied voltage avoids ionic clogging and co-ion trapping - a problem known to occur when the applied potential is varied too quickly - causing sluggish dynamics. Herein, we verify this finding experimentally. Guided by theoretical considerations, we also develop a non-linear voltage sweep and demonstrate, with molecular dynamics simulations, that it can charge a nanopore even faster than the corresponding optimized linear sweep. For discharging we find, with simulations and in experiments, that if we reverse the applied potential and then sweep it to zero, the pores lose their charge much quicker than they do for a short-circuited discharge over their internal resistance. Our findings open up opportunities to greatly accelerate charging and discharging of subnanometre pores without compromising the capacitive characteristics, improving their importance for energy storage, capacitive deionization, and electrochemical heat harvesting.