08 Fakultät Mathematik und Physik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    Ionic liquids in conducting nanoslits : how important is the range of the screened electrostatic interactions?
    (2022) Groda, Yaroslav; Dudka, Maxym; Oshanin, Gleb; Kornyshev, Alexei A.; Kondrat, Svyatoslav
    Analytical models for capacitive energy storage in nanopores attract growing interest as they can provide in-depth analytical insights into charging mechanisms. So far, such approaches have been limited to models with nearest-neighbor interactions. This assumption is seemingly justified due to a strong screening of inter-ionic interactions in narrow conducting pores. However, how important is the extent of these interactions? Does it affect the energy storage and phase behavior of confined ionic liquids? Herein, we address these questions using a two-dimensional lattice model with next-nearest and further neighbor interactions developed to describe ionic liquids in conducting slit confinements. With simulations and analytical calculations, we find that next-nearest interactions enhance capacitance and stored energy densities and may considerably affect the phase behavior. In particular, in some range of voltages, we reveal the emergence of large-scale mesophases that have not been reported before but may play an important role in energy storage.
  • Thumbnail Image
    ItemOpen Access
    How to speed up ion transport in nanopores
    (2020) Breitsprecher, Konrad; Janssen, Mathijs; Srimuk, Pattarachai; Mehdi, B. Layla; Presser, Volker; Holm, Christian; Kondrat, Svyatoslav
    Electrolyte-filled subnanometre pores exhibit exciting physics and play an increasingly important role in science and technology. In supercapacitors, for instance, ultranarrow pores provide excellent capacitive characteristics. However, ions experience difficulties in entering and leaving such pores, which slows down charging and discharging processes. In an earlier work we showed for a simple model that a slow voltage sweep charges ultranarrow pores quicker than an abrupt voltage step. A slowly applied voltage avoids ionic clogging and co-ion trapping - a problem known to occur when the applied potential is varied too quickly - causing sluggish dynamics. Herein, we verify this finding experimentally. Guided by theoretical considerations, we also develop a non-linear voltage sweep and demonstrate, with molecular dynamics simulations, that it can charge a nanopore even faster than the corresponding optimized linear sweep. For discharging we find, with simulations and in experiments, that if we reverse the applied potential and then sweep it to zero, the pores lose their charge much quicker than they do for a short-circuited discharge over their internal resistance. Our findings open up opportunities to greatly accelerate charging and discharging of subnanometre pores without compromising the capacitive characteristics, improving their importance for energy storage, capacitive deionization, and electrochemical heat harvesting.