08 Fakultät Mathematik und Physik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    ItemOpen Access
    Heterodyne sensing of microwaves with a quantum sensor
    (2021) Meinel, Jonas; Vorobyov, Vadim; Yavkin, Boris; Dasari, Durga; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Wrachtrup, Jörg
    Diamond quantum sensors are sensitive to weak microwave magnetic fields resonant to the spin transitions. However, the spectral resolution in such protocols is ultimately limited by the sensor lifetime. Here, we demonstrate a heterodyne detection method for microwaves (MW) leading to a lifetime independent spectral resolution in the GHz range. We reference the MW signal to a local oscillator by generating the initial superposition state from a coherent source. Experimentally, we achieve a spectral resolution below 1 Hz for a 4 GHz signal far below the sensor lifetime limit of kilohertz. Furthermore, we show control over the interaction of the MW-field with the two-level system by applying dressing fields, pulsed Mollow absorption and Floquet dynamics under strong longitudinal radio frequency drive. While pulsed Mollow absorption leads to improved sensitivity, the Floquet dynamics allow robust control, independent from the system’s resonance frequency. Our work is important for future studies in sensing weak microwave signals in a wide frequency range with high spectral resolution.
  • Thumbnail Image
    ItemOpen Access
    Readout and control of an endofullerene electronic spin
    (2020) Pinto, Dinesh; Paone, Domenico; Kern, Bastian; Dierker, Tim; Wieczorek, René; Singha, Aparajita; Dasari, Durga; Finkler, Amit; Harneit, Wolfgang; Wrachtrup, Jörg; Kern, Klaus
    Atomic spins for quantum technologies need to be individually addressed and positioned with nanoscale precision. C60 fullerene cages offer a robust packaging for atomic spins, while allowing in-situ physical positioning at the nanoscale. However, achieving single-spin level readout and control of endofullerenes has so far remained elusive. In this work, we demonstrate electron paramagnetic resonance on an encapsulated nitrogen spin (14N@C60) within a C60 matrix using a single near-surface nitrogen vacancy (NV) center in diamond at 4.7 K. Exploiting the strong magnetic dipolar interaction between the NV and endofullerene electronic spins, we demonstrate radio-frequency pulse controlled Rabi oscillations and measure spin-echos on an encapsulated spin. Modeling the results using second-order perturbation theory reveals an enhanced hyperfine interaction and zero-field splitting, possibly caused by surface adsorption on diamond. These results demonstrate the first step towards controlling single endofullerenes, and possibly building large-scale endofullerene quantum machines, which can be scaled using standard positioning or self-assembly methods.
  • Thumbnail Image
    ItemOpen Access
    Quantum Fourier transform for nanoscale quantum sensing
    (2021) Vorobyov, Vadim; Zaiser, Sebastian; Abt, Nikolas; Meinel, Jonas; Dasari, Durga; Neumann, Philipp; Wrachtrup, Jörg
    The quantum Fourier transformation (QFT) is a key building block for a whole wealth of quantum algorithms. Despite its proven efficiency, only a few proof-of-principle demonstrations have been reported. Here we utilize QFT to enhance the performance of a quantum sensor. We implement the QFT algorithm in a hybrid quantum register consisting of a nitrogen-vacancy (NV) center electron spin and three nuclear spins. The QFT runs on the nuclear spins and serves to process the sensor - i.e., the NV electron spin signal. Specifically, we show the application of QFT for correlation spectroscopy, where the long correlation time benefits the use of the QFT in gaining maximum precision and dynamic range at the same time. We further point out the ability for demultiplexing the nuclear magnetic resonance (NMR) signals using QFT and demonstrate precision scaling with the number of used qubits. Our results mark the application of a complex quantum algorithm in sensing which is of particular interest for high dynamic range quantum sensing and nanoscale NMR spectroscopy experiments.
  • Thumbnail Image
    ItemOpen Access
    High-resolution nanoscale NMR for arbitrary magnetic fields
    (2023) Meinel, Jonas; Kwon, MinSik; Maier, Rouven; Dasari, Durga; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Vorobyov, Vadim; Wrachtrup, Jörg
    Nitrogen vacancy (NV) centers are a major platform for the detection of nuclear magnetic resonance (NMR) signals at the nanoscale. To overcome the intrinsic electron spin lifetime limit in spectral resolution, a heterodyne detection approach is widely used. However, application of this technique at high magnetic fields is yet an unsolved problem. Here, we introduce a heterodyne detection method utilizing a series of phase coherent electron nuclear double resonance sensing blocks, thus eliminating the numerous Rabi microwave pulses required in the detection. Our detection protocol can be extended to high magnetic fields, allowing chemical shift resolution in NMR experiments. We demonstrate this principle on a weakly coupled 13 C nuclear spin in the bath surrounding single NV centers, and compare the results to existing heterodyne protocols. Additionally, we identify the combination of NV-spin-initialization infidelity and strong sensor-target-coupling as linewidth-limiting decoherence source, paving the way towards high-field heterodyne NMR protocols with chemical resolution.