08 Fakultät Mathematik und Physik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9
Browse
Search Results
Item Open Access Quantum nonlinear spectroscopy of single nuclear spins(2022) Meinel, Jonas; Vorobyov, Vadim; Wang, Ping; Yavkin, Boris; Pfender, Mathias; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Liu, Ren-Bao; Wrachtrup, JörgConventional nonlinear spectroscopy, which use classical probes, can only access a limited set of correlations in a quantum system. Here we demonstrate that quantum nonlinear spectroscopy, in which a quantum sensor and a quantum object are first entangled and the sensor is measured along a chosen basis, can extract arbitrary types and orders of correlations in a quantum system. We measured fourth-order correlations of single nuclear spins that cannot be measured in conventional nonlinear spectroscopy, using sequential weak measurement via a nitrogen-vacancy center in diamond. The quantum nonlinear spectroscopy provides fingerprint features to identify different types of objects, such as Gaussian noises, random-phased AC fields, and quantum spins, which would be indistinguishable in second-order correlations. This work constitutes an initial step toward the application of higher-order correlations to quantum sensing, to examining the quantum foundation (by, e.g., higher-order Leggett-Garg inequality), and to studying quantum many-body physics.