08 Fakultät Mathematik und Physik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9
Browse
21 results
Search Results
Item Open Access Generation of terahertz radiation via the transverse thermoelectric effect(2023) Yordanov, Petar; Priessnitz, Tim; Kim, Min‐Jae; Cristiani, Georg; Logvenov, Gennady; Keimer, Bernhard; Kaiser, StefanTerahertz (THz) radiation is a powerful tool with widespread applications ranging from imaging, sensing, and broadband communications to spectroscopy and nonlinear control of materials. Future progress in THz technology depends on the development of efficient, structurally simple THz emitters that can be implemented in advanced miniaturized devices. Here, it is shown how the natural electronic anisotropy of layered conducting transition metal oxides enables the generation of intense terahertz radiation via the transverse thermoelectric effect. In thin films grown on off‐cut substrates, femtosecond laser pulses generate ultrafast out‐of‐plane temperature gradients, which in turn launch in‐plane thermoelectric currents, thus allowing efficient emission of the resulting THz field out of the film structure. This scheme is demonstrated in experiments on thin films of the layered metals PdCoO2 and La1.84Sr0.16CuO4, and model calculations that elucidate the influence of the material parameters on the intensity and spectral characteristics of the emitted THz field are presented. Due to its simplicity, the method opens up a promising avenue for the development of highly versatile THz sources and integrable emitter elements.Item Open Access Effects of high-power laser radiation on polymers for 3D printing micro-optics(2023) Klein, Sebastian; Ruchka, Pavel; Klumpp, Thomas; Bartels, Nils; Steinle, Tobias; Giessen, HaraldItem Open Access Towards fiber-coupled plasmonic perfect absorber superconducting nanowire photodetectors for the near- and mid-infrared(2023) Mennle, Sandra; Karl, Philipp; Ubl, Monika; Ruchka, Pavel; Weber, Ksenia; Hentschel, Mario; Flad, Philipp; Giessen, HaraldItem Open Access 3D direct laser writing of highly absorptive photoresist for miniature optical apertures(2022) Schmid, Michael D.; Toulouse, Andrea; Thiele, Simon; Mangold, Simon; Herkommer, Alois; Giessen, HaraldThe importance of 3D direct laser writing as an enabling technology increased rapidly in recent years. Complex micro-optics and optical devices with various functionalities are now feasible. Different possibilities to increase the optical performance are demonstrated, for example, multi-lens objectives, a combination of different photoresists, or diffractive optical elements. It is still challenging to create fitting apertures for these micro optics. In this work, a novel and simple way to create 3D-printed opaque structures with a highly absorptive photoresist is introduced, which can be used to fabricate microscopic apertures increasing the contrast of 3D-printed micro optics and enabling new optical designs. Both hybrid printing by combining clear and opaque resists, as well as printing transparent optical elements and their surrounding opaque apertures solely from a single black resist by using different printing thicknesses are demonstrated.Item Open Access 3D stimulated Raman spectral imaging of water dynamics associated with pectin-glycocalyceal entanglement(2023) Floess, Moritz; Steinle, Tobias; Werner, Florian; Wang, Yunshan; Wagner, Willi Linus; Steinle, Verena; Liu, Betty; Zheng, Yifan; Chen, Zi; Ackermann, Maximilian; Mentzer, Steven J.; Giessen, HaraldItem Open Access Integrated optoelectronic devices using lab‐on‐fiber technology(2022) Ricciardi, Armando; Zimmer, Michael; Witz, Norbert; Micco, Alberto; Piccirillo, Federica; Giaquinto, Martino; Kaschel, Mathias; Burghartz, Joachim; Jetter, Michael; Michler, Peter; Cusano, Andrea; Portalupi, Simone LucaSilica fibers are nowadays cornerstones in several technological implementations from long‐distance communication, to sensing applications in many scenarios. To further enlarge the functionalities, the compactness, and the performances of fiber‐based devices, one needs to reliably integrate small‐footprint components such as sensors, light sources, and detectors onto single optical fiber substrates. Here, a novel proof of concept is presented to deterministically integrate optoelectronic chips onto the facet of an optical fiber, further implementing the electrical contacting between the chip and fiber itself. The CMOS‐compatible procedure is based on a suitable combination of metal deposition, laser machining, and micromanipulation, directly applied onto the fiber tip. The proposed method is validated by transferring, aligning, and bonding a quantum‐well based laser on the core of a multimode optical fiber. The successful monolithic device integration on fiber shows simultaneously electrical contacting between the laser and the ferrule, and 20% light in‐coupling in the fiber. These results pave new ways to develop the next generation of optoelectronic systems on fiber. The technological approach will set a new relevant milestone along the lab‐on‐fiber roadmap, opening new avenues for a novel class of integrated optoelectronic fiber platforms, featuring unrivaled miniaturization, compactness, and performances levels, designed for specific applications.Item Open Access 3D-printed miniature spectrometer for the visible range with a 100 × 100 μm2 footprint(2021) Toulouse, Andrea; Drozella, Johannes; Thiele, Simon; Giessen, Harald; Herkommer, AloisItem Open Access Spectrally resolved ultrafast transient dynamics of a femtosecond fiber-feedback optical parametric oscillator(2023) Floess, Moritz; Steinle, Tobias; Giessen, HaraldItem Open Access Hybrid fiber-solid-state laser with 3D-printed intracavity lenses(2023) Angstenberger, Simon; Ruchka, Pavel; Hentschel, Mario; Steinle, Tobias; Giessen, HaraldItem Open Access 3D printed micro-optics for quantum technology: Optimised coupling of single quantum dot emission into a single-mode fibre(2021) Sartison, Marc; Weber, Ksenia; Thiele, Simon; Bremer, Lucas; Fischbach, Sarah; Herzog, Thomas; Kolatschek, Sascha; Jetter, Michael; Reitzenstein, Stephan; Herkommer, Alois; Michler, Peter; Portalupi, Simone Luca; Giessen, Harald
- «
- 1 (current)
- 2
- 3
- »