08 Fakultät Mathematik und Physik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9

Browse

Search Results

Now showing 1 - 10 of 41
  • Thumbnail Image
    ItemOpen Access
    Tailored nanocomposites for 3D printed micro-optics
    (2020) Weber, Ksenia; Werdehausen, Daniel; König, Peter; Thiele, Simon; Schmid, Michael; Decker, Manuel; Oliveira, Peter William de; Herkommer, Alois; Giessen, Harald
  • Thumbnail Image
    ItemOpen Access
    Mass-producible micro-optical elements by injection compression molding and focused ion beam structured titanium molding tools
    (2020) Ristok, Simon; Roeder, Marcel; Thiele, Simon; Hentschel, Mario; Guenther, Thomas; Zimmermann, André; Herkommer, Alois; Giessen, Harald
  • Thumbnail Image
    ItemOpen Access
    Vibrational quenching of weakly bound cold molecular ions immersed in their parent gas
    (2020) Jachymski, Krzysztof; Meinert, Florian
    Hybrid ion–atom systems provide an excellent platform for studies of state-resolved quantum chemistry at low temperatures, where quantum effects may be prevalent. Here we study theoretically the process of vibrational relaxation of an initially weakly bound molecular ion due to collisions with the background gas atoms. We show that this inelastic process is governed by the universal long-range part of the interaction potential, which allows for using simplified model potentials applicable to multiple atomic species. The product distribution after the collision can be estimated by making use of the distorted wave Born approximation. We find that the inelastic collisions lead predominantly to small changes in the binding energy of the molecular ion.
  • Thumbnail Image
    ItemOpen Access
    Generation of terahertz radiation via the transverse thermoelectric effect
    (2023) Yordanov, Petar; Priessnitz, Tim; Kim, Min‐Jae; Cristiani, Georg; Logvenov, Gennady; Keimer, Bernhard; Kaiser, Stefan
    Terahertz (THz) radiation is a powerful tool with widespread applications ranging from imaging, sensing, and broadband communications to spectroscopy and nonlinear control of materials. Future progress in THz technology depends on the development of efficient, structurally simple THz emitters that can be implemented in advanced miniaturized devices. Here, it is shown how the natural electronic anisotropy of layered conducting transition metal oxides enables the generation of intense terahertz radiation via the transverse thermoelectric effect. In thin films grown on off‐cut substrates, femtosecond laser pulses generate ultrafast out‐of‐plane temperature gradients, which in turn launch in‐plane thermoelectric currents, thus allowing efficient emission of the resulting THz field out of the film structure. This scheme is demonstrated in experiments on thin films of the layered metals PdCoO2 and La1.84Sr0.16CuO4, and model calculations that elucidate the influence of the material parameters on the intensity and spectral characteristics of the emitted THz field are presented. Due to its simplicity, the method opens up a promising avenue for the development of highly versatile THz sources and integrable emitter elements.
  • Thumbnail Image
    ItemOpen Access
    Surface- and tip-enhanced resonant Raman scattering from CdSe nanocrystals
    (2015) Sheremet, Evgeniya; Milekhin, Alexander G.; Rodriguez, Raul D.; Weiss, Thomas; Nesterov, Maxim; Rodyakina, Ekaterina E.; Gordan, Ovidiu D.; Sveshnikova, Larisa L.; Duda, Tatyana A.; Gridchin, Victor A.; Dzhagan, Volodymyr M.; Hietschold, Michael; Zahn, Dietrich R. T.
    Surface- and tip-enhanced resonant Raman scattering (resonant SERS and TERS) by optical phonons in a monolayer of CdSe quantum dots (QDs) is demonstrated. The SERS enhancement was achieved by employing plasmonically active substrates consisting of gold arrays with varying nanocluster diameters prepared by electron-beam lithography. The magnitude of the SERS enhancement depends on the localized surface plasmon resonance (LSPR) energy, which is determined by the structural parameters. The LSPR positions as a function of nanocluster diameter were experimentally determined from spectroscopic micro-ellipsometry, and compared to numerical simulations showing good qualitative agreement. The monolayer of CdSe QDs was deposited by the Langmuir–Blodgett-based technique on the SERS substrates. By tuning the excitation energy close to the band gap of the CdSe QDs and to the LSPR energy, resonant SERS by longitudinal optical (LO) phonons of CdSe QDs was realized. A SERS enhancement factor of 2 × 10 3 was achieved. This allowed the detection of higher order LO modes of CdSe QDs, evidencing the high crystalline quality of QDs. The dependence of LO phonon mode intensity on the size of Au nanoclusters reveals a resonant character, suggesting that the electromagnetic mechanism of the SERS enhancement is dominant. Finally, the resonant TERS spectrum from CdSe QDs was obtained using electrochemically etched gold tips providing an enhancement on the order of 10 4 . This is an important step towards the detection of the phonon spectrum from a single QD.
  • Thumbnail Image
    ItemOpen Access
    Effects of high-power laser radiation on polymers for 3D printing micro-optics
    (2023) Klein, Sebastian; Ruchka, Pavel; Klumpp, Thomas; Bartels, Nils; Steinle, Tobias; Giessen, Harald
  • Thumbnail Image
    ItemOpen Access
    Coupling strength of complex plasmonic structures in the multiple dipole approximation
    (2011) Langguth, Lutz; Giessen, Harald
    We present a simple model to calculate the spatial dependence of the interaction strength between two plasmonic objects. Our approach is based on a multiple dipole approximation and utilizes the current distributions at the resonances in single objects. To obtain the interaction strength, we compute the potential energy of discrete weighted dipoles associated with the current distributions of the plasmonic modes in the scattered fields of their mutual partners. We investigate in detail coupled stacked plasmonic wires, stereometamaterials and plasmon-induced transparency materials. Our calculation scheme includes retardation and can be carried out in seconds on a standard PC.
  • Thumbnail Image
    ItemOpen Access
    Short-range surface plasmonics: localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface
    (2017) Frank, Bettina; Kahl, Philip; Podbiel, Daniel; Spektor, Grisha; Orenstein, Meir; Fu, Liwei; Weiss, Thomas; Horn-von Hoegen, Michael; Davis, Timothy J.; Meyer zu Heringdorf, Frank-J.; Giessen, Harald
  • Thumbnail Image
    ItemOpen Access
    Nearly diffraction limited FTIR mapping using an ultrastable broadband femtosecond laser tunable from 1.33 to 8 µm
    (2017) Mörz, Florian; Semenyshyn, Rostyslav; Steinle, Tobias; Neubrech, Frank; Zschieschang, Ute; Klauk, Hagen; Steinmann, Andy; Giessen, Harald
    Micro-Fourier-transform infrared (FTIR) spectroscopy is a widespread technique that enables broadband measurements of infrared active molecular vibrations at high sensitivity. SiC globars are often applied as light sources in tabletop systems, typically covering a spectral range from about 1 to 20 µm (10 000 - 500 cm−1) in FTIR spectrometers. However, measuring sample areas below 40x40 µm2 requires very long integration times due to their inherently low brilliance. This hampers the detection of ultrasmall samples, such as minute amounts of molecules or single nanoparticles. In this publication we extend the current limits of FTIR spectroscopy in terms of measurable sample areas, detection limit and speed by utilizing a broadband, tabletop laser system with MHz repetition rate and femtosecond pulse duration that covers the spectral region between 1250 - 7520 cm−1 (1.33 - 8 µm). We demonstrate mapping of a 150x150 µm2 sample of 100 nm thick molecule layers at 1430 cm−1 (7 µm) with 10x10 µm2 spatial resolution and a scan speed of 3.5 µm/sec. Compared to a similar globar measurement an order of magnitude lower noise is achieved, due to an excellent long-term wavelength and power stability, as well as an orders of magnitude higher brilliance.