08 Fakultät Mathematik und Physik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9

Browse

Search Results

Now showing 1 - 10 of 31
  • Thumbnail Image
    ItemOpen Access
    Quantum fluctuations in one-dimensional supersolids
    (2023) Bühler, Chris; Ilg, Tobias; Büchler, Hans Peter
  • Thumbnail Image
    ItemOpen Access
    Bell-state measurement exceeding 50% success probability with linear optics
    (2023) Bayerbach, Matthias J.; D’Aurelio, Simone E.; Loock, Peter van; Barz, Stefanie
  • Thumbnail Image
    ItemOpen Access
    Cavity QED based on room temperature atoms interacting with a photonic crystal cavity : a feasibility study
    (2020) Alaeian, Hadiseh; Ritter, Ralf; Basic, Muamera; Löw, Robert; Pfau, Tilman
    The paradigm of cavity QED is a two-level emitter interacting with a high-quality factor single-mode optical resonator. The hybridization of the emitter and photon wave functions mandates large vacuum Rabi frequencies and long coherence times; features that so far have been successfully realized with trapped cold atoms and ions, and localized solid-state quantum emitters such as superconducting circuits, quantum dots, and color centers Reiserer and Rempe (Rev Modern Phys 87:1379, 2015), Faraon et al. (Phys Rev 81:033838, 2010). Thermal atoms, on the other hand, provide us with a dense emitter ensemble and in comparison to the cold systems are more compatible with integration, hence enabling large-scale quantum systems. However, their thermal motion and large transit-time broadening is a major bottleneck that has to be circumvented. A promising remedy could benefit from the highly controllable and tunable electromagnetic fields of a nano-photonic cavity with strong local electric-field enhancements. Utilizing this feature, here we investigate the interaction between fast moving thermal atoms and a nano-beam photonic crystal cavity (PCC) with large quality factor and small mode volume. Through fully quantum mechanical calculations, including Casimir-Polder potential (i.e. the effect of the surface on radiation properties of an atom), we show, when designed properly, the achievable coupling between the flying atom and the cavity photon would be strong enough to lead to quantum interference effects in spite of short interaction times. In addition, the time-resolved detection of different trajectories can be used to identify single and multiple atom counts. This probabilistic approach will find applications in cavity QED studies in dense atomic media and paves the way towards realizing large-scale, room-temperature macroscopic quantum systems aimed at out of the lab quantum devices.
  • Thumbnail Image
    ItemOpen Access
    Heterodyne sensing of microwaves with a quantum sensor
    (2021) Meinel, Jonas; Vorobyov, Vadim; Yavkin, Boris; Dasari, Durga; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Wrachtrup, Jörg
    Diamond quantum sensors are sensitive to weak microwave magnetic fields resonant to the spin transitions. However, the spectral resolution in such protocols is ultimately limited by the sensor lifetime. Here, we demonstrate a heterodyne detection method for microwaves (MW) leading to a lifetime independent spectral resolution in the GHz range. We reference the MW signal to a local oscillator by generating the initial superposition state from a coherent source. Experimentally, we achieve a spectral resolution below 1 Hz for a 4 GHz signal far below the sensor lifetime limit of kilohertz. Furthermore, we show control over the interaction of the MW-field with the two-level system by applying dressing fields, pulsed Mollow absorption and Floquet dynamics under strong longitudinal radio frequency drive. While pulsed Mollow absorption leads to improved sensitivity, the Floquet dynamics allow robust control, independent from the system’s resonance frequency. Our work is important for future studies in sensing weak microwave signals in a wide frequency range with high spectral resolution.
  • Thumbnail Image
    ItemOpen Access
    Quantum Fourier transform for nanoscale quantum sensing
    (2021) Vorobyov, Vadim; Zaiser, Sebastian; Abt, Nikolas; Meinel, Jonas; Dasari, Durga; Neumann, Philipp; Wrachtrup, Jörg
    The quantum Fourier transformation (QFT) is a key building block for a whole wealth of quantum algorithms. Despite its proven efficiency, only a few proof-of-principle demonstrations have been reported. Here we utilize QFT to enhance the performance of a quantum sensor. We implement the QFT algorithm in a hybrid quantum register consisting of a nitrogen-vacancy (NV) center electron spin and three nuclear spins. The QFT runs on the nuclear spins and serves to process the sensor - i.e., the NV electron spin signal. Specifically, we show the application of QFT for correlation spectroscopy, where the long correlation time benefits the use of the QFT in gaining maximum precision and dynamic range at the same time. We further point out the ability for demultiplexing the nuclear magnetic resonance (NMR) signals using QFT and demonstrate precision scaling with the number of used qubits. Our results mark the application of a complex quantum algorithm in sensing which is of particular interest for high dynamic range quantum sensing and nanoscale NMR spectroscopy experiments.
  • Thumbnail Image
    ItemOpen Access
    Character of doped holes in Nd1-xSrxNiO2
    (2021) Plienbumrung, Tharathep; Schmid, Michael Thobias; Daghofer, Maria; Oleś, Andrzej M.
    We investigate charge distribution in the recently discovered high-𝑇𝑐 superconductors, layered nickelates. With increasing value of charge-transfer energy, we observe the expected crossover from the cuprate to the local triplet regime upon hole doping. We find that the 𝑑-𝑝 Coulomb interaction 𝑈𝑑𝑝 makes Zhang-Rice singlets less favorable, while the amplitude of local triplets at Ni ions is enhanced. By investigating the effective two-band model with orbitals of 𝑥2-𝑦2 and s symmetries we show that antiferromagnetic interactions dominate for electron doping. The screened interactions for the s band suggest the importance of rare-earth atoms in superconducting nickelates.
  • Thumbnail Image
    ItemOpen Access
    Single-band versus two-band description of magnetism in infinite-layer nickelates
    (2023) Plienbumrung, Tharathep; Daghofer, Maria; Morée, Jean-Baptiste; Oleś, Andrzej M.
    We present a weak-coupling analysis of magnetism in infinite-layer nickelates, where we compare a single-band description with a two-band model. Both models predict that (i) hybridization due to hopping is negligible, and (𝑖𝑖) the magnetic properties are characterized by very similar dynamic structure factors, 𝑆(𝑘⃗ ,𝜔), at the points (𝜋,𝜋,0) and (𝜋,𝜋,𝜋). This gives effectively a two-dimensional description of the magnetic properties.
  • Thumbnail Image
    ItemOpen Access
    Towards fiber-coupled plasmonic perfect absorber superconducting nanowire photodetectors for the near- and mid-infrared
    (2023) Mennle, Sandra; Karl, Philipp; Ubl, Monika; Ruchka, Pavel; Weber, Ksenia; Hentschel, Mario; Flad, Philipp; Giessen, Harald
  • Thumbnail Image
    ItemOpen Access
    Proximate ferromagnetic state in the Kitaev model material α-RuCl3
    (2021) Suzuki, H.; Liu, H.; Bertinshaw, J.; Ueda, K.; Kim, H.; Laha, S.; Weber, D.; Yang, Z.; Wang, L.; Takahashi, H.; Fürsich, K.; Minola, M.; Lotsch, B. V.; Kim, B. J.; Yavaş, H.; Daghofer, M.; Chaloupka, J.; Khaliullin, G.; Gretarsson, H.; Keimer, B.
    α-RuCl3 is a major candidate for the realization of the Kitaev quantum spin liquid, but its zigzag antiferromagnetic order at low temperatures indicates deviations from the Kitaev model. We have quantified the spin Hamiltonian of α-RuCl3 by a resonant inelastic x-ray scattering study at the Ru L3 absorption edge. In the paramagnetic state, the quasi-elastic intensity of magnetic excitations has a broad maximum around the zone center without any local maxima at the zigzag magnetic Bragg wavevectors. This finding implies that the zigzag order is fragile and readily destabilized by competing ferromagnetic correlations. The classical ground state of the experimentally determined Hamiltonian is actually ferromagnetic. The zigzag state is stabilized by quantum fluctuations, leaving ferromagnetism - along with the Kitaev spin liquid - as energetically proximate metastable states. The three closely competing states and their collective excitations hold the key to the theoretical understanding of the unusual properties of α-RuCl3 in magnetic fields.
  • Thumbnail Image
    ItemOpen Access
    Cyclic cooling of quantum systems at the saturation limit
    (2021) Zaiser, Sebastian; Cheung, Chun Tung; Yang, Sen; Dasari, Durga Bhaktavatsala Rao; Raeisi, Sadegh; Wrachtrup, Jörg
    The achievable bounds of cooling quantum systems, and the possibility to violate them is not well-explored experimentally. For example, among the common methods to enhance spin polarization (cooling), one utilizes the low temperature and high-magnetic field condition or employs a resonant exchange with highly polarized spins. The achievable polarization, in such cases, is bounded either by Boltzmann distribution or by energy conservation. Heat-bath algorithmic cooling schemes (HBAC), on the other hand, have shown the possibility to surpass the physical limit set by the energy conservation and achieve a higher saturation limit in spin cooling. Despite, the huge theoretical progress, and few principle demonstrations, neither the existence of the limit nor its application in cooling quantum systems towards the maximum achievable limit have been experimentally verified. Here, we show the experimental saturation of the HBAC limit for single nuclear spins, beyond any available polarization in solid-state spin system, the Nitrogen-Vacancy centers in diamond. We benchmark the performance of our experiment over a range of variable reset polarizations (bath temperatures), and discuss the role of quantum coherence in HBAC.