08 Fakultät Mathematik und Physik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9
Browse
5 results
Search Results
Item Open Access Convolution on distribution spaces characterized by regularization(2023) Kleiner, Tillmann; Hilfer, RudolfLocally convex convolutor spaces are studied which consist of those distributions that define a continuous convolution operator mapping from the space of test functions into a given locally convex lattice of measures. The convolutor spaces are endowed with the topology of uniform convergence on bounded sets. Their locally convex structure is characterized via regularization and function‐valued seminorms under mild structural assumptions on the space of measures. Many recent generalizations of classical distribution spaces turn out to be special cases of the general convolutor spaces introduced here. Recent topological characterizations of convolutor spaces via regularization are extended and improved. A valuable property of the convolutor spaces in applications is that convolution of distributions inherits continuity properties from those of bilinear convolution mappings between the locally convex lattices of measures.Item Open Access Existence and uniqueness of nonmonotone solutions in porous media flow(2022) Steinle, Rouven; Kleiner, Tillmann; Kumar, Pradeep; Hilfer, RudolfExistence and uniqueness of solutions for a simplified model of immiscible two-phase flow in porous media are obtained in this paper. The mathematical model is a simplified physical model with hysteresis in the flux functions. The resulting semilinear hyperbolic-parabolic equation is expected from numerical work to admit non-monotone imbibition-drainage fronts. We prove the local existence of imbibition-drainage fronts. The uniqueness, global existence, maximal regularity and boundedness of the solutions are also discussed. Methodically, the results are established by means of semigroup theory and fractional interpolation spaces.Item Open Access Sequential generalized Riemann-Liouville derivatives based on distributional convolution(2022) Kleiner, Tillmann; Hilfer, RudolfSequential generalized fractional Riemann-Liouville derivatives are introduced as composites of distributional derivatives on the right half axis and partially defined operators, called Dirac-function removers, that remove the component of singleton support at the origin of distributions that are of order zero on a neighborhood of the origin. The concept of Dirac-function removers allows to formulate generalized initial value problems with less restrictions on the orders and types than previous approaches to sequential fractional derivatives. The well-posedness of these initial value problems and the structure of their solutions are studied.Item Open Access Fractional glassy relaxation and convolution modules of distributions(2021) Kleiner, Tillmann; Hilfer, RudolfSolving fractional relaxation equations requires precisely characterized domains of definition for applications of fractional differential and integral operators. Determining these domains has been a longstanding problem. Applications in physics and engineering typically require extension from domains of functions to domains of distributions. In this work convolution modules are constructed for given sets of distributions that generate distributional convolution algebras. Convolutional inversion of fractional equations leads to a broad class of multinomial Mittag-Leffler type distributions. A comprehensive asymptotic analysis of these is carried out. Combined with the module construction the asymptotic analysis yields domains of distributions, that guarantee existence and uniqueness of solutions to fractional differential equations. The mathematical results are applied to anomalous dielectric relaxation in glasses. An analytic expression for the frequency dependent dielectric susceptibility is applied to broadband spectra of glycerol. This application reveals a temperature independent and universal dynamical scaling exponent.Item Open Access Fractional calculus for distributions(2024) Hilfer, Rudolf; Kleiner, TillmannFractional derivatives and integrals for measures and distributions are reviewed. The focus is on domains and co-domains for translation invariant fractional operators. Fractional derivatives and integrals interpreted as -convolution operators with power law kernels are found to have the largest domains of definition. As a result, extending domains from functions to distributions via convolution operators contributes to far reaching unifications of many previously existing definitions of fractional integrals and derivatives. Weyl fractional operators are thereby extended to distributions using the method of adjoints. In addition, discretized fractional calculus and fractional calculus of periodic distributions can both be formulated and understood in terms of -convolution.