08 Fakultät Mathematik und Physik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9

Browse

Search Results

Now showing 1 - 10 of 223
  • Thumbnail Image
    ItemOpen Access
    Quantum fluctuations in one-dimensional supersolids
    (2023) Bühler, Chris; Ilg, Tobias; Büchler, Hans Peter
  • Thumbnail Image
    ItemOpen Access
    The role of dimensionality and geometry in quench-induced nonequilibrium forces
    (2021) Nejad, Mehrana Raeisian; Khalilian, Hamidreza; Rohwer, Christian M.; Moghaddam, Ali Ghorbanzadeh
    We present an analytical formalism, supported by numerical simulations, for studying forces that act on curved walls following temperature quenches of the surrounding ideal Brownian fluid. We show that, for curved surfaces, the post-quench forces initially evolve rapidly to an extremal value, whereafter they approach their steady state value algebraically in time. In contrast to the previously-studied case of flat boundaries (lines or planes), the algebraic decay for curved geometries depends on the dimension of the system. Specifically, steady-state values of the force are approached in time as t-d/2 in d-dimensional spherical (curved) geometries. For systems consisting of concentric circles or spheres, the exponent does not change for the force on the outer circle or sphere. However, the force exerted on the inner circles or sphere experiences an overshoot and, as a result, does not evolve to the steady state in a simple algebraic manner. The extremal value of the force also depends on the dimension of the system, and originates from curved boundaries and the fact that particles inside a sphere or circle are locally more confined, and diffuse less freely than particles outside the circle or sphere.
  • Thumbnail Image
    ItemOpen Access
    Tailored nanocomposites for 3D printed micro-optics
    (2020) Weber, Ksenia; Werdehausen, Daniel; König, Peter; Thiele, Simon; Schmid, Michael; Decker, Manuel; Oliveira, Peter William de; Herkommer, Alois; Giessen, Harald
  • Thumbnail Image
    ItemOpen Access
    Bell-state measurement exceeding 50% success probability with linear optics
    (2023) Bayerbach, Matthias J.; D’Aurelio, Simone E.; Loock, Peter van; Barz, Stefanie
  • Thumbnail Image
    ItemOpen Access
    Tuning charge order in (TMTTF)2X by partial anion substitution
    (2021) Pustogow, Andrej; Dizdarevic, Daniel; Erfort, Sebastian; Iakutkina, Olga; Merkl, Valentino; Untereiner, Gabriele; Dressel, Martin
    In the quasi-one-dimensional (TMTTF)2X compounds with effectively quarter-filled bands, electronic charge order is stabilized from the delicate interplay of Coulomb repulsion and electronic bandwidth. The correlation strength is commonly tuned by physical pressure or chemical substitution with stoichiometric ratios of anions and cations. Here, we investigate the charge-ordered state through partial substitution of the anions in (TMTTF)2[AsF6]1-x[SbF6]x with x≈0.3, determined from the intensity of infrared vibrations, which is sufficient to suppress the spin-Peierls state. Our dc transport experiments reveal a transition temperature TCO = 120 K and charge gap ΔCO=430 K between the values of the two parent compounds (TMTTF)2AsF6 and (TMTTF)2SbF6. Upon plotting the two parameters for different (TMTTF)2X, we find a universal relationship between TCO and ΔCO yielding that the energy gap vanishes for transition temperatures TCO≤60 K. While these quantities indicate that the macroscopic correlation strength is continuously tuned, our vibrational spectroscopy results probing the local charge disproportionation suggest that 2δ is modulated on a microscopic level.
  • Thumbnail Image
    ItemOpen Access
    A brief review of capillary number and its use in capillary desaturation curves
    (2022) Guo, Hu; Song, Kaoping; Hilfer, R.
    Capillary number, understood as the ratio of viscous force to capillary force, is one of the most important parameters in enhanced oil recovery (EOR). It continues to attract the interest of scientists and engineers, because the nature and quantification of macroscopic capillary forces remain controversial. At least 41 different capillary numbers have been collected here from the literature. The ratio of viscous and capillary force enters crucially into capillary desaturation experiments. Although the ratio is length scale dependent, not all definitions of capillary number depend on length scale, indicating potential inconsistencies between various applications and publications. Recently, new numbers have appeared and the subject continues to be actively discussed. Therefore, a short review seems appropriate and pertinent.
  • Thumbnail Image
    ItemOpen Access
    Cavity QED based on room temperature atoms interacting with a photonic crystal cavity : a feasibility study
    (2020) Alaeian, Hadiseh; Ritter, Ralf; Basic, Muamera; Löw, Robert; Pfau, Tilman
    The paradigm of cavity QED is a two-level emitter interacting with a high-quality factor single-mode optical resonator. The hybridization of the emitter and photon wave functions mandates large vacuum Rabi frequencies and long coherence times; features that so far have been successfully realized with trapped cold atoms and ions, and localized solid-state quantum emitters such as superconducting circuits, quantum dots, and color centers Reiserer and Rempe (Rev Modern Phys 87:1379, 2015), Faraon et al. (Phys Rev 81:033838, 2010). Thermal atoms, on the other hand, provide us with a dense emitter ensemble and in comparison to the cold systems are more compatible with integration, hence enabling large-scale quantum systems. However, their thermal motion and large transit-time broadening is a major bottleneck that has to be circumvented. A promising remedy could benefit from the highly controllable and tunable electromagnetic fields of a nano-photonic cavity with strong local electric-field enhancements. Utilizing this feature, here we investigate the interaction between fast moving thermal atoms and a nano-beam photonic crystal cavity (PCC) with large quality factor and small mode volume. Through fully quantum mechanical calculations, including Casimir-Polder potential (i.e. the effect of the surface on radiation properties of an atom), we show, when designed properly, the achievable coupling between the flying atom and the cavity photon would be strong enough to lead to quantum interference effects in spite of short interaction times. In addition, the time-resolved detection of different trajectories can be used to identify single and multiple atom counts. This probabilistic approach will find applications in cavity QED studies in dense atomic media and paves the way towards realizing large-scale, room-temperature macroscopic quantum systems aimed at out of the lab quantum devices.
  • Thumbnail Image
    ItemOpen Access
    Mass-producible micro-optical elements by injection compression molding and focused ion beam structured titanium molding tools
    (2020) Ristok, Simon; Roeder, Marcel; Thiele, Simon; Hentschel, Mario; Guenther, Thomas; Zimmermann, André; Herkommer, Alois; Giessen, Harald
  • Thumbnail Image
    ItemOpen Access
    Stability of compact symmetric spaces
    (2022) Semmelmann, Uwe; Weingart, Gregor
    In this article, we study the stability problem for the Einstein-Hilbert functional on compact symmetric spaces following and completing the seminal work of Koiso on the subject. We classify in detail the irreducible representations of simple Lie algebras with Casimir eigenvalue less than the Casimir eigenvalue of the adjoint representation and use this information to prove the stability of the Einstein metrics on both the quaternionic and Cayley projective plane. Moreover, we prove that the Einstein metrics on quaternionic Grassmannians different from projective spaces are unstable.
  • Thumbnail Image
    ItemOpen Access
    Heterodyne sensing of microwaves with a quantum sensor
    (2021) Meinel, Jonas; Vorobyov, Vadim; Yavkin, Boris; Dasari, Durga; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Wrachtrup, Jörg
    Diamond quantum sensors are sensitive to weak microwave magnetic fields resonant to the spin transitions. However, the spectral resolution in such protocols is ultimately limited by the sensor lifetime. Here, we demonstrate a heterodyne detection method for microwaves (MW) leading to a lifetime independent spectral resolution in the GHz range. We reference the MW signal to a local oscillator by generating the initial superposition state from a coherent source. Experimentally, we achieve a spectral resolution below 1 Hz for a 4 GHz signal far below the sensor lifetime limit of kilohertz. Furthermore, we show control over the interaction of the MW-field with the two-level system by applying dressing fields, pulsed Mollow absorption and Floquet dynamics under strong longitudinal radio frequency drive. While pulsed Mollow absorption leads to improved sensitivity, the Floquet dynamics allow robust control, independent from the system’s resonance frequency. Our work is important for future studies in sensing weak microwave signals in a wide frequency range with high spectral resolution.