08 Fakultät Mathematik und Physik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    ItemOpen Access
    Coupling strength of complex plasmonic structures in the multiple dipole approximation
    (2011) Langguth, Lutz; Giessen, Harald
    We present a simple model to calculate the spatial dependence of the interaction strength between two plasmonic objects. Our approach is based on a multiple dipole approximation and utilizes the current distributions at the resonances in single objects. To obtain the interaction strength, we compute the potential energy of discrete weighted dipoles associated with the current distributions of the plasmonic modes in the scattered fields of their mutual partners. We investigate in detail coupled stacked plasmonic wires, stereometamaterials and plasmon-induced transparency materials. Our calculation scheme includes retardation and can be carried out in seconds on a standard PC.
  • Thumbnail Image
    ItemOpen Access
    3D stimulated Raman spectral imaging of water dynamics associated with pectin-glycocalyceal entanglement
    (2023) Floess, Moritz; Steinle, Tobias; Werner, Florian; Wang, Yunshan; Wagner, Willi Linus; Steinle, Verena; Liu, Betty; Zheng, Yifan; Chen, Zi; Ackermann, Maximilian; Mentzer, Steven J.; Giessen, Harald
  • Thumbnail Image
    ItemOpen Access
    Regression methods for ophthalmic glucose sensing using metamaterials
    (2011) Rapp, Philipp; Mesch, Martin; Giessen, Harald; Tarín, Cristina
    We present a novel concept for in vivo sensing of glucose using metamaterials in combination with automatic learning systems. In detail, we use the plasmonic analogue of electromagnetically induced transparency (EIT) as sensor and evaluate the acquired data with support vector machines. The metamaterial can be integrated into a contact lens. This sensor changes its optical properties such as reflectivity upon the ambient glucose concentration, which allows for in situ measurements in the eye. We demonstrate that estimation errors below 2% at physiological concentrations are possible using simulations of the optical properties of the metamaterial in combination with an appropriate electrical circuitry and signal processing scheme. In the future, functionalization of our sensor with hydrogel will allow for a glucose-specific detection which is insensitive to other tear liquid substances providing both excellent selectivity and sensitivity.