08 Fakultät Mathematik und Physik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9
Browse
5 results
Search Results
Item Open Access 3D stimulated Raman spectral imaging of water dynamics associated with pectin-glycocalyceal entanglement(2023) Floess, Moritz; Steinle, Tobias; Werner, Florian; Wang, Yunshan; Wagner, Willi Linus; Steinle, Verena; Liu, Betty; Zheng, Yifan; Chen, Zi; Ackermann, Maximilian; Mentzer, Steven J.; Giessen, HaraldItem Open Access Nonlinear dynamics of and coherent Raman imaging with fiber-feedback optical parametric oscillators(2024) Floess, Moritz; Giessen, Harald (Prof. Dr.)Item Open Access Spectrally resolved ultrafast transient dynamics of a femtosecond fiber-feedback optical parametric oscillator(2023) Floess, Moritz; Steinle, Tobias; Giessen, HaraldItem Open Access Electro-active metaobjective from metalenses-on-demand(2022) Karst, Julian; Lee, Yohan; Floess, Moritz; Ubl, Monika; Ludwigs, Sabine; Hentschel, Mario; Giessen, HaraldSwitchable metasurfaces can actively control the functionality of integrated metadevices with high efficiency and on ultra-small length scales. Such metadevices include active lenses, dynamic diffractive optical elements, or switchable holograms. Especially, for applications in emerging technologies such as AR (augmented reality) and VR (virtual reality) devices, sophisticated metaoptics with unique functionalities are crucially important. In particular, metaoptics which can be switched electrically on or off will allow to change the routing, focusing, or functionality in general of miniaturized optical components on demand. Here, we demonstrate metalenses-on-demand made from metallic polymer plasmonic nanoantennas which are electrically switchable at CMOS (complementary metal-oxide-semiconductor) compatible voltages of ±1 V. The nanoantennas exhibit plasmonic resonances which can be reversibly switched ON and OFF via the applied voltage, utilizing the optical metal-to-insulator transition of the metallic polymer. Ultimately, we realize an electro-active non-volatile multi-functional metaobjective composed of two metalenses, whose unique optical states can be set on demand. Overall, our work opens up the possibility for a new level of electro-optical elements for ultra-compact photonic integration.Item Open Access Photoacoustic spectroscopy with a widely tunable narrowband fiber-feedback optical parametric oscillator(2024) Schmid, Luca; Kadriu, Florent; Kuppel, Sandro; Floess, Moritz; Steinle, Tobias; Giessen, Harald