08 Fakultät Mathematik und Physik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9
Browse
33 results
Search Results
Item Open Access Tailored nanocomposites for 3D printed micro-optics(2020) Weber, Ksenia; Werdehausen, Daniel; König, Peter; Thiele, Simon; Schmid, Michael; Decker, Manuel; Oliveira, Peter William de; Herkommer, Alois; Giessen, HaraldItem Open Access Mass-producible micro-optical elements by injection compression molding and focused ion beam structured titanium molding tools(2020) Ristok, Simon; Roeder, Marcel; Thiele, Simon; Hentschel, Mario; Guenther, Thomas; Zimmermann, André; Herkommer, Alois; Giessen, HaraldItem Open Access Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure(2019) Schmid, Michael; Ludescher, Dominik; Giessen, HaraldItem Open Access Effects of high-power laser radiation on polymers for 3D printing micro-optics(2023) Klein, Sebastian; Ruchka, Pavel; Klumpp, Thomas; Bartels, Nils; Steinle, Tobias; Giessen, HaraldItem Open Access Coupling strength of complex plasmonic structures in the multiple dipole approximation(2011) Langguth, Lutz; Giessen, HaraldWe present a simple model to calculate the spatial dependence of the interaction strength between two plasmonic objects. Our approach is based on a multiple dipole approximation and utilizes the current distributions at the resonances in single objects. To obtain the interaction strength, we compute the potential energy of discrete weighted dipoles associated with the current distributions of the plasmonic modes in the scattered fields of their mutual partners. We investigate in detail coupled stacked plasmonic wires, stereometamaterials and plasmon-induced transparency materials. Our calculation scheme includes retardation and can be carried out in seconds on a standard PC.Item Open Access Short-range surface plasmonics: localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface(2017) Frank, Bettina; Kahl, Philip; Podbiel, Daniel; Spektor, Grisha; Orenstein, Meir; Fu, Liwei; Weiss, Thomas; Horn-von Hoegen, Michael; Davis, Timothy J.; Meyer zu Heringdorf, Frank-J.; Giessen, HaraldItem Open Access Nearly diffraction limited FTIR mapping using an ultrastable broadband femtosecond laser tunable from 1.33 to 8 µm(2017) Mörz, Florian; Semenyshyn, Rostyslav; Steinle, Tobias; Neubrech, Frank; Zschieschang, Ute; Klauk, Hagen; Steinmann, Andy; Giessen, HaraldMicro-Fourier-transform infrared (FTIR) spectroscopy is a widespread technique that enables broadband measurements of infrared active molecular vibrations at high sensitivity. SiC globars are often applied as light sources in tabletop systems, typically covering a spectral range from about 1 to 20 µm (10 000 - 500 cm−1) in FTIR spectrometers. However, measuring sample areas below 40x40 µm2 requires very long integration times due to their inherently low brilliance. This hampers the detection of ultrasmall samples, such as minute amounts of molecules or single nanoparticles. In this publication we extend the current limits of FTIR spectroscopy in terms of measurable sample areas, detection limit and speed by utilizing a broadband, tabletop laser system with MHz repetition rate and femtosecond pulse duration that covers the spectral region between 1250 - 7520 cm−1 (1.33 - 8 µm). We demonstrate mapping of a 150x150 µm2 sample of 100 nm thick molecule layers at 1430 cm−1 (7 µm) with 10x10 µm2 spatial resolution and a scan speed of 3.5 µm/sec. Compared to a similar globar measurement an order of magnitude lower noise is achieved, due to an excellent long-term wavelength and power stability, as well as an orders of magnitude higher brilliance.Item Open Access Tailored optical functionality by combining electron‐beam and focused gold‐ion beam lithography for solid and inverse coupled plasmonic nanostructures(2020) Hentschel, Mario; Karst, Julian; Giessen, HaraldPlasmonics is a field uniquely driven by advances in micro‐ and nanofabrication. Many design ideas pose significant challenges in their experimental realization and test the limits of modern fabrication techniques. Here, the combination of electron‐beam and gold ion‐beam lithography is introduced as an alternative and highly versatile route for the fabrication of complex and high fidelity plasmonic nanostructures. The capability of this strategy is demonstrated on a selection of planar as well as 3D nanostructures. Large area and extremely accurate structures are presented with little to no defects and errors. These structures exhibit exceptional quality in shape fidelity and alignment precision. The combination of the two techniques makes full use of their complementary capabilities for the realization of complex plasmonic structures with superior optical properties and functionalities as well as ultra‐distinct spectral features which will find wide application in plasmonics, nanooptics, metasurfaces, plasmonic sensing, and similar areas.Item Open Access Towards fiber-coupled plasmonic perfect absorber superconducting nanowire photodetectors for the near- and mid-infrared(2023) Mennle, Sandra; Karl, Philipp; Ubl, Monika; Ruchka, Pavel; Weber, Ksenia; Hentschel, Mario; Flad, Philipp; Giessen, HaraldItem Open Access Stitching-free 3D printing of millimeter-sized highly transparent spherical and aspherical optical components(2020) Ristok, Simon; Thiele, Simon; Toulouse, Andrea; Herkommer, Alois; Giessen, Harald