08 Fakultät Mathematik und Physik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    ItemOpen Access
    Percolativity of porous media
    (2022) Hilfer, Rudolf; Hauskrecht, J.
    Connectivity and connectedness are nonadditive geometric functionals on the set of pore scale structures. They determine transport of mass, volume or momentum in porous media, because without connectivity there cannot be transport. Percolativity of porous media is introduced here as a geometric descriptor of connectivity, that can be computed from the pore scale and persists to the macroscale through a suitable upscaling limit. It is a measure that combines local percolation probabilities with a probability density of ratios of eigenvalues of the tensor of local percolating directions. Percolativity enters directly into generalized effective medium approximations. Predictions from these generalized effective medium approximations are found to be compatible with apparently anisotropic Archie correlations observed in experiment.
  • Thumbnail Image
    ItemOpen Access
    Convolution on distribution spaces characterized by regularization
    (2023) Kleiner, Tillmann; Hilfer, Rudolf
    Locally convex convolutor spaces are studied which consist of those distributions that define a continuous convolution operator mapping from the space of test functions into a given locally convex lattice of measures. The convolutor spaces are endowed with the topology of uniform convergence on bounded sets. Their locally convex structure is characterized via regularization and function‐valued seminorms under mild structural assumptions on the space of measures. Many recent generalizations of classical distribution spaces turn out to be special cases of the general convolutor spaces introduced here. Recent topological characterizations of convolutor spaces via regularization are extended and improved. A valuable property of the convolutor spaces in applications is that convolution of distributions inherits continuity properties from those of bilinear convolution mappings between the locally convex lattices of measures.
  • Thumbnail Image
    ItemOpen Access
    Existence and uniqueness of nonmonotone solutions in porous media flow
    (2022) Steinle, Rouven; Kleiner, Tillmann; Kumar, Pradeep; Hilfer, Rudolf
    Existence and uniqueness of solutions for a simplified model of immiscible two-phase flow in porous media are obtained in this paper. The mathematical model is a simplified physical model with hysteresis in the flux functions. The resulting semilinear hyperbolic-parabolic equation is expected from numerical work to admit non-monotone imbibition-drainage fronts. We prove the local existence of imbibition-drainage fronts. The uniqueness, global existence, maximal regularity and boundedness of the solutions are also discussed. Methodically, the results are established by means of semigroup theory and fractional interpolation spaces.
  • Thumbnail Image
    ItemOpen Access
    Sequential generalized Riemann-Liouville derivatives based on distributional convolution
    (2022) Kleiner, Tillmann; Hilfer, Rudolf
    Sequential generalized fractional Riemann-Liouville derivatives are introduced as composites of distributional derivatives on the right half axis and partially defined operators, called Dirac-function removers, that remove the component of singleton support at the origin of distributions that are of order zero on a neighborhood of the origin. The concept of Dirac-function removers allows to formulate generalized initial value problems with less restrictions on the orders and types than previous approaches to sequential fractional derivatives. The well-posedness of these initial value problems and the structure of their solutions are studied.
  • Thumbnail Image
    ItemOpen Access
    Fractional glassy relaxation and convolution modules of distributions
    (2021) Kleiner, Tillmann; Hilfer, Rudolf
    Solving fractional relaxation equations requires precisely characterized domains of definition for applications of fractional differential and integral operators. Determining these domains has been a longstanding problem. Applications in physics and engineering typically require extension from domains of functions to domains of distributions. In this work convolution modules are constructed for given sets of distributions that generate distributional convolution algebras. Convolutional inversion of fractional equations leads to a broad class of multinomial Mittag-Leffler type distributions. A comprehensive asymptotic analysis of these is carried out. Combined with the module construction the asymptotic analysis yields domains of distributions, that guarantee existence and uniqueness of solutions to fractional differential equations. The mathematical results are applied to anomalous dielectric relaxation in glasses. An analytic expression for the frequency dependent dielectric susceptibility is applied to broadband spectra of glycerol. This application reveals a temperature independent and universal dynamical scaling exponent.
  • Thumbnail Image
    ItemOpen Access
    Fractional calculus for distributions
    (2024) Hilfer, Rudolf; Kleiner, Tillmann
    Fractional derivatives and integrals for measures and distributions are reviewed. The focus is on domains and co-domains for translation invariant fractional operators. Fractional derivatives and integrals interpreted as -convolution operators with power law kernels are found to have the largest domains of definition. As a result, extending domains from functions to distributions via convolution operators contributes to far reaching unifications of many previously existing definitions of fractional integrals and derivatives. Weyl fractional operators are thereby extended to distributions using the method of adjoints. In addition, discretized fractional calculus and fractional calculus of periodic distributions can both be formulated and understood in terms of -convolution.