08 Fakultät Mathematik und Physik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    Hybrid molecules consisting of lysine dendrons with several hydrophobic tails : a SCF study of self-assembling
    (2023) Shavykin, Oleg V.; Mikhtaniuk, Sofia E.; Fatullaev, Emil I.; Neelov, Igor M.; Leermakers, Frans A. M.; Brito, Mariano E.; Holm, Christian; Borisov, Oleg V.; Darinskii, Anatoly A.
    In this article, we used the numerical self-consistent field method of Scheutjens-Fleer to study the micellization of hybrid molecules consisting of one polylysine dendron with charged end groups and several linear hydrophobic tails attached to its root. The main attention was paid to spherical micelles and the determination of the range of parameters at which they can appear. A relationship has been established between the size and internal structure of the resulting spherical micelles and the length and number of hydrophobic tails, as well as the number of dendron generations. It is shown that the splitting of the same number of hydrophobic monomers from one long tail into several short tails leads to a decrease in the aggregation number and, accordingly, the number of terminal charges in micelles. At the same time, it was shown that the surface area per dendron does not depend on the number of hydrophobic monomers or tails in the hybrid molecule. The relationship between the structure of hybrid molecules and the electrostatic properties of the resulting micelles has also been studied. It is found that the charge distribution in the corona depends on the number of dendron generations G in the hybrid molecule. For a small number of generations (up to G=3), a standard double electric layer is observed. For a larger number of generations (G=4), the charges of dendrons in the corona are divided into two populations: in the first population, the charges are in the spherical layer near the boundary between the micelle core and shell, and in the second population, the charges are near the periphery of the spherical shell. As a result, a part of the counterions is localized in the wide region between them. These results are of potential interest for the use of spherical dendromicelles as nanocontainers for drug delivery.
  • Thumbnail Image
    ItemOpen Access
    MDSuite : comprehensive post-processing tool for particle simulations
    (2023) Tovey, Samuel; Zills, Fabian; Torres-Herrador, Francisco; Lohrmann, Christoph; Brückner, Marco; Holm, Christian
    Particle-Based (PB) simulations, including Molecular Dynamics (MD), provide access to system observables that are not easily available experimentally. However, in most cases, PB data needs to be processed after a simulation to extract these observables. One of the main challenges in post-processing PB simulations is managing the large amounts of data typically generated without incurring memory or computational capacity limitations. In this work, we introduce the post-processing tool: MDSuite. This software, developed in Python, combines state-of-the-art computing technologies such as TensorFlow, with modern data management tools such as HDF5 and SQL for a fast, scalable, and accurate PB data processing engine. This package, built around the principles of FAIR data, provides a memory safe, parallelized, and GPU accelerated environment for the analysis of particle simulations. The software currently offers 17 calculators for the computation of properties including diffusion coefficients, thermal conductivity, viscosity, radial distribution functions, coordination numbers, and more. Further, the object-oriented framework allows for the rapid implementation of new calculators or file-readers for different simulation software. The Python front-end provides a familiar interface for many users in the scientific community and a mild learning curve for the inexperienced. Future developments will include the introduction of more analysis associated with ab-initio methods, colloidal/macroscopic particle methods, and extension to experimental data.