08 Fakultät Mathematik und Physik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    ItemOpen Access
    Integrated optoelectronic devices using lab‐on‐fiber technology
    (2022) Ricciardi, Armando; Zimmer, Michael; Witz, Norbert; Micco, Alberto; Piccirillo, Federica; Giaquinto, Martino; Kaschel, Mathias; Burghartz, Joachim; Jetter, Michael; Michler, Peter; Cusano, Andrea; Portalupi, Simone Luca
    Silica fibers are nowadays cornerstones in several technological implementations from long‐distance communication, to sensing applications in many scenarios. To further enlarge the functionalities, the compactness, and the performances of fiber‐based devices, one needs to reliably integrate small‐footprint components such as sensors, light sources, and detectors onto single optical fiber substrates. Here, a novel proof of concept is presented to deterministically integrate optoelectronic chips onto the facet of an optical fiber, further implementing the electrical contacting between the chip and fiber itself. The CMOS‐compatible procedure is based on a suitable combination of metal deposition, laser machining, and micromanipulation, directly applied onto the fiber tip. The proposed method is validated by transferring, aligning, and bonding a quantum‐well based laser on the core of a multimode optical fiber. The successful monolithic device integration on fiber shows simultaneously electrical contacting between the laser and the ferrule, and 20% light in‐coupling in the fiber. These results pave new ways to develop the next generation of optoelectronic systems on fiber. The technological approach will set a new relevant milestone along the lab‐on‐fiber roadmap, opening new avenues for a novel class of integrated optoelectronic fiber platforms, featuring unrivaled miniaturization, compactness, and performances levels, designed for specific applications.
  • Thumbnail Image
    ItemOpen Access
    Bright source of Purcell‐enhanced, triggered, single photons in the telecom C‐band
    (2023) Nawrath, Cornelius; Joos, Raphael; Kolatschek, Sascha; Bauer, Stephanie; Pruy, Pascal; Hornung, Florian; Fischer, Julius; Huang, Jiasheng; Vijayan, Ponraj; Sittig, Robert; Jetter, Michael; Portalupi, Simone Luca; Michler, Peter
    Several emission features mark semiconductor quantum dots as promising non-classical light sources for prospective quantum implementations. For long-distance transmission and Si-based on-chip processing, the possibility to match the telecom C-band is decisive, while source brightness and high single-photon purity are key features in virtually any quantum implementation. An InAs/InGaAs/GaAs quantum dot emitting in the telecom C-band coupled to a circular Bragg grating is presented here. This cavity structure stands out due to its high broadband collection efficiency and high attainable Purcell factors. Here, simultaneously high brightness with a fiber-coupled single-photon count rate of 13.9 MHz for an excitation repetition rate of 228 MHz (first-lens single-photon collection efficiency ≈17% for NA = 0.6), while maintaining a low multi-photon contribution of g(2)(0) = 0.0052 is demonstrated. Moreover, the compatibility with temperatures of up to 40 K attainable with compact cryo coolers, further underlines the suitability for out-of-the-lab implementations.
  • Thumbnail Image
    ItemOpen Access
    High-rate intercity quantum key distribution with a semiconductor single-photon source
    (2024) Yang, Jingzhong; Jiang, Zenghui; Benthin, Frederik; Hanel, Joscha; Fandrich, Tom; Joos, Raphael; Bauer, Stephanie; Kolatschek, Sascha; Hreibi, Ali; Rugeramigabo, Eddy Patrick; Jetter, Michael; Portalupi, Simone Luca; Zopf, Michael; Michler, Peter; Kück, Stefan; Ding, Fei
    Quantum key distribution (QKD) enables the transmission of information that is secure against general attacks by eavesdroppers. The use of on-demand quantum light sources in QKD protocols is expected to help improve security and maximum tolerable loss. Semiconductor quantum dots (QDs) are a promising building block for quantum communication applications because of the deterministic emission of single photons with high brightness and low multiphoton contribution. Here we report on the first intercity QKD experiment using a bright deterministic single photon source. A BB84 protocol based on polarisation encoding is realised using the high-rate single photons in the telecommunication C-band emitted from a semiconductor QD embedded in a circular Bragg grating structure. Utilising the 79 km long link with 25.49 dB loss (equivalent to 130 km for the direct-connected optical fibre) between the German cities of Hannover and Braunschweig, a record-high secret key bits per pulse of 4.8 × 10 -5 with an average quantum bit error ratio of ~ 0.65% are demonstrated. An asymptotic maximum tolerable loss of 28.11 dB is found, corresponding to a length of 144 km of standard telecommunication fibre. Deterministic semiconductor sources therefore challenge state-of-the-art QKD protocols and have the potential to excel in measurement device independent protocols and quantum repeater applications.