08 Fakultät Mathematik und Physik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9
Browse
3 results
Search Results
Item Open Access Fabrication and characterization of single-crystal diamond membranes for quantum photonics with tunable microcavities(2020) Heupel, Julia; Pallmann, Maximilian; Körber, Jonathan; Merz, Rolf; Kopnarski, Michael; Stöhr, Rainer; Reithmaier, Johann Peter; Hunger, David; Popov, CyrilThe development of quantum technologies is one of the big challenges in modern research. A crucial component for many applications is an efficient, coherent spin-photon interface, and coupling single-color centers in thin diamond membranes to a microcavity is a promising approach. To structure such micrometer thin single-crystal diamond (SCD) membranes with a good quality, it is important to minimize defects originating from polishing or etching procedures. Here, we report on the fabrication of SCD membranes, with various diameters, exhibiting a low surface roughness down to 0.4 nm on a small area scale, by etching through a diamond bulk mask with angled holes. A significant reduction in pits induced by micromasking and polishing damages was accomplished by the application of alternating Ar/Cl2 + O2 dry etching steps. By a variation of etching parameters regarding the Ar/Cl2 step, an enhanced planarization of the surface was obtained, in particular, for surfaces with a higher initial surface roughness of several nanometers. Furthermore, we present the successful bonding of an SCD membrane via van der Waals forces on a cavity mirror and perform finesse measurements which yielded values between 500 and 5000, depending on the position and hence on the membrane thickness. Our results are promising for, e.g., an efficient spin–photon interface.Item Open Access Magnetic domains and domain wall pinning in atomically thin CrBr3 revealed by nanoscale imaging(2021) Sun, Qi-Chao; Song, Tiancheng; Anderson, Eric; Brunner, Andreas; Förster, Johannes; Shalomayeva, Tetyana; Taniguchi, Takashi; Watanabe, Kenji; Gräfe, Joachim; Stöhr, Rainer; Xu, Xiaodong; Wrachtrup, JörgThe emergence of atomically thin van der Waals magnets provides a new platform for the studies of two-dimensional magnetism and its applications. However, the widely used measurement methods in recent studies cannot provide quantitative information of the magnetization nor achieve nanoscale spatial resolution. These capabilities are essential to explore the rich properties of magnetic domains and spin textures. Here, we employ cryogenic scanning magnetometry using a single-electron spin of a nitrogen-vacancy center in a diamond probe to unambiguously prove the existence of magnetic domains and study their dynamics in atomically thin CrBr3. By controlling the magnetic domain evolution as a function of magnetic field, we find that the pinning effect is a dominant coercivity mechanism and determine the magnetization of a CrBr3 bilayer to be about 26 Bohr magnetons per square nanometer. The high spatial resolution of this technique enables imaging of magnetic domains and allows to locate the sites of defects that pin the domain walls and nucleate the reverse domains. Our work highlights scanning nitrogen-vacancy center magnetometry as a quantitative probe to explore nanoscale features in two-dimensional magnets.Item Open Access Dopant-assisted stabilization of negatively charged single nitrogen-vacancy centers in phosphorus-doped diamond at low temperatures(2023) Geng, Jianpei; Shalomayeva, Tetyana; Gryzlova, Mariia; Mukherjee, Amlan; Santonocito, Santo; Dzhavadzade, Dzhavid; Dasari, Durga Bhaktavatsala Rao; Kato, Hiromitsu; Stöhr, Rainer; Denisenko, Andrej; Mizuochi, Norikazu; Wrachtrup, JörgCharge state instabilities have been a bottleneck for the implementation of solid-state spin systems and pose a major challenge to the development of spin-based quantum technologies. Here we investigate the stabilization of negatively charged nitrogen-vacancy (NV - ) centers in phosphorus-doped diamond at liquid helium temperatures. Photoionization of phosphorous donors in conjunction with charge diffusion at the nanoscale enhances NV 0 to NV - conversion and stabilizes the NV - charge state without the need for an additional repump laser. The phosphorus-assisted stabilization is explored and confirmed both with experiments and our theoretical model. Stable photoluminescence-excitation spectra are obtained for NV - centers created during the growth. The fluorescence is continuously recorded under resonant excitation to real-time monitor the charge state and the ionization and recombination rates are extracted from time traces. We find a linear laser power dependence of the recombination rate as opposed to the conventional quadratic dependence, which is attributed to the photo-ionization of phosphorus atoms.