08 Fakultät Mathematik und Physik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9
Browse
10 results
Search Results
Item Open Access Ultrafast near- and mid-infrared laser sources for linear and nonlinear spectroscopy(2016) Steinle, Tobias; Giessen, Harald (Prof. Dr.)Item Open Access Effects of high-power laser radiation on polymers for 3D printing micro-optics(2023) Klein, Sebastian; Ruchka, Pavel; Klumpp, Thomas; Bartels, Nils; Steinle, Tobias; Giessen, HaraldItem Open Access Nearly diffraction limited FTIR mapping using an ultrastable broadband femtosecond laser tunable from 1.33 to 8 µm(2017) Mörz, Florian; Semenyshyn, Rostyslav; Steinle, Tobias; Neubrech, Frank; Zschieschang, Ute; Klauk, Hagen; Steinmann, Andy; Giessen, HaraldMicro-Fourier-transform infrared (FTIR) spectroscopy is a widespread technique that enables broadband measurements of infrared active molecular vibrations at high sensitivity. SiC globars are often applied as light sources in tabletop systems, typically covering a spectral range from about 1 to 20 µm (10 000 - 500 cm−1) in FTIR spectrometers. However, measuring sample areas below 40x40 µm2 requires very long integration times due to their inherently low brilliance. This hampers the detection of ultrasmall samples, such as minute amounts of molecules or single nanoparticles. In this publication we extend the current limits of FTIR spectroscopy in terms of measurable sample areas, detection limit and speed by utilizing a broadband, tabletop laser system with MHz repetition rate and femtosecond pulse duration that covers the spectral region between 1250 - 7520 cm−1 (1.33 - 8 µm). We demonstrate mapping of a 150x150 µm2 sample of 100 nm thick molecule layers at 1430 cm−1 (7 µm) with 10x10 µm2 spatial resolution and a scan speed of 3.5 µm/sec. Compared to a similar globar measurement an order of magnitude lower noise is achieved, due to an excellent long-term wavelength and power stability, as well as an orders of magnitude higher brilliance.Item Open Access 3D stimulated Raman spectral imaging of water dynamics associated with pectin-glycocalyceal entanglement(2023) Floess, Moritz; Steinle, Tobias; Werner, Florian; Wang, Yunshan; Wagner, Willi Linus; Steinle, Verena; Liu, Betty; Zheng, Yifan; Chen, Zi; Ackermann, Maximilian; Mentzer, Steven J.; Giessen, HaraldItem Open Access Alignment-free difference frequency light source tunable from 5 to 20 µm by mixing two independently tunable OPOs(2020) Mörz, Florian; Steinle, Tobias; Linnenbank, Heiko; Steinmann, Andy; Giessen, HaraldTunable mid-infrared ultrashort lasers have become an essential tool in vibrational spectroscopy in recent years. They enabled and pushed a variety of spectroscopic applications due to their high brilliance, beam quality, low noise, and accessible wavelength range up to 20 µm. Many state-of-the-art devices apply difference frequency generation (DFG) to reach the mid-infrared spectral region. Here, birefringent phase-matching is typically employed, resulting in a significant crystal rotation during wavelength tuning. This causes a beam offset, which needs to be compensated to maintain stable beam pointing. This is crucial for any application. In this work, we present a DFG concept, which avoids crystal rotation and eliminates beam pointing variations over a broad wavelength range. It is based on two independently tunable input beams, provided by synchronously pumped parametric seeding units. We compare our concept to the more common DFG approach of mixing the signal and idler beams from a single optical parametric amplifier (OPA) or oscillator (OPO). In comparison, our concept enhances the photon efficiency of wavelengths exceeding 11 µm more than a factor of 10 and we still achieve milliwatts of output power up to 20 µm. This concept enhances DFG setups for beam-pointing-sensitive spectroscopic applications and can enable research at the border between the mid- and far-IR range due to its highly efficient performance.Item Open Access Spectrally resolved ultrafast transient dynamics of a femtosecond fiber-feedback optical parametric oscillator(2023) Floess, Moritz; Steinle, Tobias; Giessen, HaraldItem Open Access Hybrid fiber-solid-state laser with 3D-printed intracavity lenses(2023) Angstenberger, Simon; Ruchka, Pavel; Hentschel, Mario; Steinle, Tobias; Giessen, HaraldItem Open Access Compact harmonic cavity optical parametric oscillator for optical parametric amplifier seeding(2020) Nägele, Marco; Steinle, Tobias; Mörz, Florian; Linnenbank, Heiko; Steinmann, Andy; Giessen, HaraldWe present a broadly tunable highly efficient frequency conversion scheme, based on a low-threshold harmonic cavity optical parametric oscillator (OPO) followed by an idler-seeded power amplifier. By choosing the cavity length of the OPO equal to the 10th harmonic of its 41 MHz Yb:KGW solid-state pump laser, a very compact optical setup is achieved. A singly-resonant cavity without output coupler results in a low oscillation threshold of only 28-100 mW in the entire signal tuning range of 1.37-1.8 µm. The 2.4-4.15 µm idler radiation is coupled out at the 41 MHz pump frequency and employed to seed a post amplifier with nearly Watt-level output power. In addition, the seeder plus power amplifier concept results in clean signal and idler pulses at the fundamental repetition rate of 41 MHz with a time-bandwidth product below 0.4 and a relative intensity noise 10 dB lower compared to the solid-state pump laser.Item Open Access Watt-level optical parametric amplifier at 42 MHz tunable from 1.35 to 4.5 μm coherently seeded with solitons(2014) Steinle, Tobias; Steinmann, Andy; Hegenbarth, Robin; Giessen, HaraldWe report on an optical parametric amplifier at high repetition rate of 41.7 MHz seeded by an optical soliton from a tapered fiber. Gap-free signal tuning from 1.35 µm to 1.95 µm with corresponding idler wavelengths from 2.2 µm to 4.5 µm is demonstrated. The system provides up to 1.8 W average power at 1.4 µm, more than 1.1 W up to 1.7 µm, and more than 400 mW up to 4.0 µm with a signal pulse duration of 200 to 300 fs. It is directly pumped by a solid-state oscillator providing up to 7.4 W at 1.04 µm wavelength with 425 fs pulse duration. Soliton-seeding is shown to lead to excellent pulse-to-pulse stability, but it introduces a timing-jitter on the millisecond timescale. Using a two-stage concept the timing-jitter is efficiently suppressed due to the passive synchronization of both conversion stages.Item Open Access Photoacoustic spectroscopy with a widely tunable narrowband fiber-feedback optical parametric oscillator(2024) Schmid, Luca; Kadriu, Florent; Kuppel, Sandro; Floess, Moritz; Steinle, Tobias; Giessen, Harald