08 Fakultät Mathematik und Physik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9

Browse

Search Results

Now showing 1 - 10 of 12
  • Thumbnail Image
    ItemOpen Access
    Heterodyne sensing of microwaves with a quantum sensor
    (2021) Meinel, Jonas; Vorobyov, Vadim; Yavkin, Boris; Dasari, Durga; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Wrachtrup, Jörg
    Diamond quantum sensors are sensitive to weak microwave magnetic fields resonant to the spin transitions. However, the spectral resolution in such protocols is ultimately limited by the sensor lifetime. Here, we demonstrate a heterodyne detection method for microwaves (MW) leading to a lifetime independent spectral resolution in the GHz range. We reference the MW signal to a local oscillator by generating the initial superposition state from a coherent source. Experimentally, we achieve a spectral resolution below 1 Hz for a 4 GHz signal far below the sensor lifetime limit of kilohertz. Furthermore, we show control over the interaction of the MW-field with the two-level system by applying dressing fields, pulsed Mollow absorption and Floquet dynamics under strong longitudinal radio frequency drive. While pulsed Mollow absorption leads to improved sensitivity, the Floquet dynamics allow robust control, independent from the system’s resonance frequency. Our work is important for future studies in sensing weak microwave signals in a wide frequency range with high spectral resolution.
  • Thumbnail Image
    ItemOpen Access
    Readout and control of an endofullerene electronic spin
    (2020) Pinto, Dinesh; Paone, Domenico; Kern, Bastian; Dierker, Tim; Wieczorek, René; Singha, Aparajita; Dasari, Durga; Finkler, Amit; Harneit, Wolfgang; Wrachtrup, Jörg; Kern, Klaus
    Atomic spins for quantum technologies need to be individually addressed and positioned with nanoscale precision. C60 fullerene cages offer a robust packaging for atomic spins, while allowing in-situ physical positioning at the nanoscale. However, achieving single-spin level readout and control of endofullerenes has so far remained elusive. In this work, we demonstrate electron paramagnetic resonance on an encapsulated nitrogen spin (14N@C60) within a C60 matrix using a single near-surface nitrogen vacancy (NV) center in diamond at 4.7 K. Exploiting the strong magnetic dipolar interaction between the NV and endofullerene electronic spins, we demonstrate radio-frequency pulse controlled Rabi oscillations and measure spin-echos on an encapsulated spin. Modeling the results using second-order perturbation theory reveals an enhanced hyperfine interaction and zero-field splitting, possibly caused by surface adsorption on diamond. These results demonstrate the first step towards controlling single endofullerenes, and possibly building large-scale endofullerene quantum machines, which can be scaled using standard positioning or self-assembly methods.
  • Thumbnail Image
    ItemOpen Access
    Quantum Fourier transform for nanoscale quantum sensing
    (2021) Vorobyov, Vadim; Zaiser, Sebastian; Abt, Nikolas; Meinel, Jonas; Dasari, Durga; Neumann, Philipp; Wrachtrup, Jörg
    The quantum Fourier transformation (QFT) is a key building block for a whole wealth of quantum algorithms. Despite its proven efficiency, only a few proof-of-principle demonstrations have been reported. Here we utilize QFT to enhance the performance of a quantum sensor. We implement the QFT algorithm in a hybrid quantum register consisting of a nitrogen-vacancy (NV) center electron spin and three nuclear spins. The QFT runs on the nuclear spins and serves to process the sensor - i.e., the NV electron spin signal. Specifically, we show the application of QFT for correlation spectroscopy, where the long correlation time benefits the use of the QFT in gaining maximum precision and dynamic range at the same time. We further point out the ability for demultiplexing the nuclear magnetic resonance (NMR) signals using QFT and demonstrate precision scaling with the number of used qubits. Our results mark the application of a complex quantum algorithm in sensing which is of particular interest for high dynamic range quantum sensing and nanoscale NMR spectroscopy experiments.
  • Thumbnail Image
    ItemOpen Access
    Cyclic cooling of quantum systems at the saturation limit
    (2021) Zaiser, Sebastian; Cheung, Chun Tung; Yang, Sen; Dasari, Durga Bhaktavatsala Rao; Raeisi, Sadegh; Wrachtrup, Jörg
    The achievable bounds of cooling quantum systems, and the possibility to violate them is not well-explored experimentally. For example, among the common methods to enhance spin polarization (cooling), one utilizes the low temperature and high-magnetic field condition or employs a resonant exchange with highly polarized spins. The achievable polarization, in such cases, is bounded either by Boltzmann distribution or by energy conservation. Heat-bath algorithmic cooling schemes (HBAC), on the other hand, have shown the possibility to surpass the physical limit set by the energy conservation and achieve a higher saturation limit in spin cooling. Despite, the huge theoretical progress, and few principle demonstrations, neither the existence of the limit nor its application in cooling quantum systems towards the maximum achievable limit have been experimentally verified. Here, we show the experimental saturation of the HBAC limit for single nuclear spins, beyond any available polarization in solid-state spin system, the Nitrogen-Vacancy centers in diamond. We benchmark the performance of our experiment over a range of variable reset polarizations (bath temperatures), and discuss the role of quantum coherence in HBAC.
  • Thumbnail Image
    ItemOpen Access
    Optimizing NV magnetometry for magnetoneurography and magnetomyography applications
    (2023) Zhang, Chen; Zhang, Jixing; Widmann, Matthias; Benke, Magnus; Kübler, Michael; Dasari, Durga; Klotz, Thomas; Gizzi, Leonardo; Röhrle, Oliver; Brenner, Philipp; Wrachtrup, Jörg
    Magnetometers based on color centers in diamond are setting new frontiers for sensing capabilities due to their combined extraordinary performances in sensitivity, bandwidth, dynamic range, and spatial resolution, with stable operability in a wide range of conditions ranging from room to low temperatures. This has allowed for its wide range of applications, from biology and chemical studies to industrial applications. Among the many, sensing of bio-magnetic fields from muscular and neurophysiology has been one of the most attractive applications for NV magnetometry due to its compact and proximal sensing capability. Although SQUID magnetometers and optically pumped magnetometers (OPM) have made huge progress in Magnetomyography (MMG) and Magnetoneurography (MNG), exploring the same with NV magnetometry is scant at best. Given the room temperature operability and gradiometric applications of the NV magnetometer, it could be highly sensitive in the pT/Hz-range even without magnetic shielding, bringing it close to industrial applications. The presented work here elaborates on the performance metrics of these magnetometers to the state-of-the-art techniques by analyzing the sensitivity, dynamic range, and bandwidth, and discusses the potential benefits of using NV magnetometers for MMG and MNG applications.
  • Thumbnail Image
    ItemOpen Access
    Magnetic domains and domain wall pinning in atomically thin CrBr3 revealed by nanoscale imaging
    (2021) Sun, Qi-Chao; Song, Tiancheng; Anderson, Eric; Brunner, Andreas; Förster, Johannes; Shalomayeva, Tetyana; Taniguchi, Takashi; Watanabe, Kenji; Gräfe, Joachim; Stöhr, Rainer; Xu, Xiaodong; Wrachtrup, Jörg
    The emergence of atomically thin van der Waals magnets provides a new platform for the studies of two-dimensional magnetism and its applications. However, the widely used measurement methods in recent studies cannot provide quantitative information of the magnetization nor achieve nanoscale spatial resolution. These capabilities are essential to explore the rich properties of magnetic domains and spin textures. Here, we employ cryogenic scanning magnetometry using a single-electron spin of a nitrogen-vacancy center in a diamond probe to unambiguously prove the existence of magnetic domains and study their dynamics in atomically thin CrBr3. By controlling the magnetic domain evolution as a function of magnetic field, we find that the pinning effect is a dominant coercivity mechanism and determine the magnetization of a CrBr3 bilayer to be about 26 Bohr magnetons per square nanometer. The high spatial resolution of this technique enables imaging of magnetic domains and allows to locate the sites of defects that pin the domain walls and nucleate the reverse domains. Our work highlights scanning nitrogen-vacancy center magnetometry as a quantitative probe to explore nanoscale features in two-dimensional magnets.
  • Thumbnail Image
    ItemOpen Access
    Quantum nonlinear spectroscopy of single nuclear spins
    (2022) Meinel, Jonas; Vorobyov, Vadim; Wang, Ping; Yavkin, Boris; Pfender, Mathias; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Liu, Ren-Bao; Wrachtrup, Jörg
    Conventional nonlinear spectroscopy, which use classical probes, can only access a limited set of correlations in a quantum system. Here we demonstrate that quantum nonlinear spectroscopy, in which a quantum sensor and a quantum object are first entangled and the sensor is measured along a chosen basis, can extract arbitrary types and orders of correlations in a quantum system. We measured fourth-order correlations of single nuclear spins that cannot be measured in conventional nonlinear spectroscopy, using sequential weak measurement via a nitrogen-vacancy center in diamond. The quantum nonlinear spectroscopy provides fingerprint features to identify different types of objects, such as Gaussian noises, random-phased AC fields, and quantum spins, which would be indistinguishable in second-order correlations. This work constitutes an initial step toward the application of higher-order correlations to quantum sensing, to examining the quantum foundation (by, e.g., higher-order Leggett-Garg inequality), and to studying quantum many-body physics.
  • Thumbnail Image
    ItemOpen Access
    Quantum-assisted distortion-free audio signal sensing
    (2022) Zhang, Chen; Dasari, Durga; Widmann, Matthias; Meinel, Jonas; Vorobyov, Vadim; Kapitanova, Polina; Nenasheva, Elizaveta; Nakamura, Kazuo; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Wrachtrup, Jörg
    Quantum sensors are known for their high sensitivity in sensing applications. However, this sensitivity often comes with severe restrictions on other parameters which are also important. Examples are that in measurements of arbitrary signals, limitation in linear dynamic range could introduce distortions in magnitude and phase of the signal. High frequency resolution is another important feature for reconstructing unknown signals. Here, we demonstrate a distortion-free quantum sensing protocol that combines a quantum phase-sensitive detection with heterodyne readout. We present theoretical and experimental investigations using nitrogen-vacancy centers in diamond, showing the capability of reconstructing audio frequency signals with an extended linear dynamic range and high frequency resolution. Melody and speech based signals are used for demonstrating the features. The methods could broaden the horizon for quantum sensors towards applications, e.g. telecommunication in challenging environment, where low-distortion measurements are required at multiple frequency bands within a limited volume.
  • Thumbnail Image
    ItemOpen Access
    TR12 centers in diamond as a room temperature atomic scale vector magnetometer
    (2022) Foglszinger, Jonas; Denisenko, Andrej; Kornher, Thomas; Schreck, Matthias; Knolle, Wolfgang; Yavkin, Boris; Kolesov, Roman; Wrachtrup, Jörg
    The family of room temperature atomic scale magnetometers is currently limited to nitrogen-vacancy centers in diamond. However, nitrogen-vacancy centers are insensitive to strong off-axis magnetic fields. In this work, we show that the well-known TR12 radiative defect in diamond, exhibits strong optically detected magnetic resonance (ODMR) signal under optical saturation. We also demonstrate that the spin system responsible for the magnetic resonance is an excited triplet state that can be coherently controlled at room temperature on a single defect level. The high optically detected magnetic resonance contrast, which is maintained even for strong off-axis magnetic fields, suggests that TR12 centers can be used for vector magnetometry even at high field.
  • Thumbnail Image
    ItemOpen Access
    Dopant-assisted stabilization of negatively charged single nitrogen-vacancy centers in phosphorus-doped diamond at low temperatures
    (2023) Geng, Jianpei; Shalomayeva, Tetyana; Gryzlova, Mariia; Mukherjee, Amlan; Santonocito, Santo; Dzhavadzade, Dzhavid; Dasari, Durga Bhaktavatsala Rao; Kato, Hiromitsu; Stöhr, Rainer; Denisenko, Andrej; Mizuochi, Norikazu; Wrachtrup, Jörg
    Charge state instabilities have been a bottleneck for the implementation of solid-state spin systems and pose a major challenge to the development of spin-based quantum technologies. Here we investigate the stabilization of negatively charged nitrogen-vacancy (NV - ) centers in phosphorus-doped diamond at liquid helium temperatures. Photoionization of phosphorous donors in conjunction with charge diffusion at the nanoscale enhances NV 0 to NV - conversion and stabilizes the NV - charge state without the need for an additional repump laser. The phosphorus-assisted stabilization is explored and confirmed both with experiments and our theoretical model. Stable photoluminescence-excitation spectra are obtained for NV - centers created during the growth. The fluorescence is continuously recorded under resonant excitation to real-time monitor the charge state and the ionization and recombination rates are extracted from time traces. We find a linear laser power dependence of the recombination rate as opposed to the conventional quadratic dependence, which is attributed to the photo-ionization of phosphorus atoms.