08 Fakultät Mathematik und Physik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9
Browse
8 results
Search Results
Item Open Access Lasertreatment of Al-Cu materials(2023) Kümmel, SimonIn this work, the bond strength and stability of aluminium, copper and their alloys are investigated upon excitation using DFT calculations. In particular, free energy curves, elastic constants and phonon spectra are used to identify changes in the bond strength and the density of states at different degrees of excitation are used to explain the changes. We find nearly no change in bond strength in aluminium, a strong increase in bond strength in copper and bond hardening of certain modes in the AlCu alloys.Item Open Access 3D stimulated Raman spectral imaging of water dynamics associated with pectin-glycocalyceal entanglement(2023) Floess, Moritz; Steinle, Tobias; Werner, Florian; Wang, Yunshan; Wagner, Willi Linus; Steinle, Verena; Liu, Betty; Zheng, Yifan; Chen, Zi; Ackermann, Maximilian; Mentzer, Steven J.; Giessen, HaraldItem Open Access Absence of the Efimov effect in dimensions one and two(2021) Barth, Simon; Weidl, Timo (Prof. TeknD)Item Open Access Molecular dynamics simulations for the study of interaction between non-canonical DNA structures and biochemically relevant co-solutes(2023) Oprzeska-Zingrebe, Ewa Anna; Smiatek, Jens (Priv.-Doz. Dr.)Non-canonical nucleic acid structures, such as DNA G-quadruplexes and i-Motifs, have been proved to play an important role in key biological processes, including gene expression, replication, regulation or telomere maintenance. The presence of G-quadruplexes in promoter regions of certain oncogenes turn them into a potential target for cancer therapies. Besides their biological implications, non-canonical DNA structures are present in genomes of various organisms, who adopt certain levels of co-solutes to protect their internal structures against the harsh environment. This study presents the research on the selected non-canonical DNA structures of particular biological relevance: G-quadruplex with only two tetrads, small DNA hairpin and ssDNA strand as well as canonical double helix. The atomistic molecular dynamics (MD) simulations have been applied to elucidate the structural, configuration and solvation properties of the analyzed structures in the presence of assorted co-solutes, composing the native cellular environment in nature: urea, ectoine and trimethylamine-N-oxide (TMAO). With the application of molecular theory of solutions, one determines and exemplifies the thermodynamic properties of investigated structures in various environments close to the physiological conditions present in living cells. This study uncovers the versatile nature of DNA interaction with diverse co-solutes and water, as well as the cross-interactions between the inorganic components of the biomolecular solution. The cellular mechanisms of DNA structural stabilization and destabilization are hereby described in terms of preferential binding and preferential exclusion, with particular emphasis on the properties of solvent structure within individual solvation shells. In this regards, this work presents a comprehensive study on the intracellular interactions involving nucleic acids, thus shedding light into their microscopic properties and opening the path for further biomedical research.Item Open Access Terahertz and infrared spectroscopy of thin film cuprate superconductors(2021) Dawson, Robert David; Keimer, Bernhard (Prof. Dr.)Item Open Access Scanning tunneling microscopy of superconductors and high field electron spin resonance(2023) Uhl, Maximilian; Ast, Christian R. (Priv.-Doz. Dr.)Electron spin resonance on the single atom level is demonstrated with a scanning tunneling microscope (STM) in a frequency range from 60 to 100 GHz. For the irradiation of the high frequency signal, an external antenna has been built into the STM. Advanced methods for the signal's transfer function compensation have been developed. Furthermore, the multiband Josephson effect is analyzed for the type I two-band superconductor Pb for different tip-sample distances. The consideration of the interaction with the local electromagnetic environment and multiple Andreev reflections allows for the extraction of multiple microscopic parameters.Item Open Access Topology optimization of metalization grid patterns to improve the Power conversion efficiency of thin-film solar cells(2021) Braun, BenediktDer metallische Leiter, welcher in Form eines Gitters auf der Oberfläche einer Solarzelle angebracht ist, heißt Grid. Die Funktion dieses Grids ist es, den in der Absorberschicht einer Solarzelle erzeugten Strom, ohne große Verluste, an der Oberfläche zum externen Abgreifpunkt zu leiten. Durch die sehr gute Leitfähigkeit des Grids wird ein verlustarmer Ladungstransport ermöglicht. Allerdings bewirkt das für Lichtstrahlen undurchdringbare Grid eine Abschattung der Absoberschicht und verhindert, dass an dieser Stelle Strom erzeugt werden kann. Wenn kein Grid angebracht ist, fließt die Ladung durch die oberste Schicht einer Solarzelle. Diese besteht aus transparenten leitfähigen Oxiden (engl. transparent conducting oxides (TCO)). Das TCO lässt Lichtstrahlen durch und dadurch kann Strom erzeugt werden. Obwohl die Schicht den Strom leiten kann, besitzt sie denoch einen sehr hohen elektrischen Widerstand. Das bedeutet, eine geeignete Wahl des Gridmusters verschattet möglichst wenig Fläche der Solarzelle und bietet trotzdem einen flächendeckenden, verlustarmen Ladungsabtransport. Ein Gridmuster, welches beide Anforderungen bestens erfüllt, soll in dieser Bachelorarbeit mithilfe von Topologie-Optimierung gefunden werden. Topologie-Optimierung ist eine mathematische Optimierungsmethode, mit der, innerhalb eines Gebietes, eine optimale Materialverteilung gefunden werden kann, um eine hohe, strukturbedingte Leistung zu erzielen. Im Zuge dieser Arbeit ist dieses Gebiet die Oberfläche einer Solarzelle und das Material, welches auf der Oberfläche verteilt werden soll, ist das Metall, welches das Gridmuster bildet. Die Leistung einer Solarzelle wird mit dem Wirkungsgrad angegeben. Der Wirkungsgrad ist die Effizienz, mit der die Solarenergie in elektrische Energie umgewandelt werden kann. Zur Berechnung des Wirkungsgrades wird das Gebiet mit einem Voronoi-Diagramm in Simplizes unterteilt. Basierend auf der Poisson-Gleichung für elektrische Leitfähigkeit, kann die Ladung, die durch ein Simplex fließt, mit einer Finite-Elemente-Methode berechnet werden. Aus den einzelnen generierten Strömen lässt sich ein Gesamtstrom berechnen, mit welchem die erzeugte, elektrische Energie berechnet werden kann. Der einzige Parameter, welcher zur Berechnung der Effizienz einer Solarzelle benötigt und in dieser Arbeit variiert wird, ist das Gridmuster. Die Komponenten des Dichtevektors geben dabei die Metalldichte eines jeden Simplexes an. Zur Optimierung dieses Dichtevektors werden in dieser Arbeit Optimierungsverfahren verglichen, die in Richtung des steilsten Abstiegs optimieren. Mit einem dieser Ver- fahren werden weitere Modifizierungen des Dichtevektors getestet. Eine der Modifizierungen betrifft dabei die Umgebung des externen Abgreifpunktes. Die aufgebrachte Gridfläche muss an dieser Stelle groß genug sein, damit ein externer Kontakt ohne Probleme angebracht werden kann. Die nächste Modifizierung, die verwendet wird, ist eine Methode zur lokalen Optimierung. Dabei werden die durch die Diskretisierung entstandenen Simplizes zufällig in mehrere lokalen Teilgebiete eingeteilt und der Reihe nach optimiert. Besitzt eine Komponente des Dichtevektors einen Wert von 0 steht dies für kein Grid, während ein Wert von 1 für das vorhanden sein von Grid steht. Die Komponenten des Dichtevektors repräsentieren dabei jeweils ein Simplex und damit eine Teilfläche der Solarzelle. Eine Modifizierung ermöglicht außer den Werten 0 (kein Grid, schlecht leitend, Strom wird erzeugt) und 1 (Grid, gut leitend, kein Strom wird erzeugt) Zwischenwerte. Mit diesen Zwischenwerten kann eine kontinuierliche Optimierung durchgeführt werden. Die Leitfähigkeit bzw. die Möglichkeit Strom zu generieren, wird dabei für Zwischenwerte interpoliert. Je nach Wahl der Interpolationsfunktion, kann der Wert der Leitfähigkeit für Zwischenwerte gut oder schlecht sein. Ebenso für die Menge an generiertem Strom. Sowohl niedrige als auch hohe Werte kommen mit Vorteilen, weshalb eine geschickte Kombination zu einem verbesserten Optimierungsverhalten führen kann. Die letzte Modifizierung, die eine Rolle spielt, ist das Gridmuster, von welchem ausgehend optimiert wird. Dabei wird, unter anderem, das im Labor vom Zentrum für Sonnenenergie- und Wasserstoffforschung Baden-Württemberg (ZSW) verwendete Gridmuster optimiert. Das Ziel dieser Arbeit ist es, mit den kombinierten Methoden und den Ergebnissen der damit durchgeführten Optimierungen ein neues Gridmuster zu konstruieren, welches dem bisher verwendeten Gridmuster überlegen ist.Item Open Access Critical magnetic fluctuations in strongly electron-correlated systems(2022) Trepka, Heiko; Keimer, Bernhard (Prof. Dr.)In this work, we use high-resolution neutron Triple-Axis and Spin-echo spectroscopy to study the critical properties of the strongly electron-correlated 4d square-lattice antiferromagnets Ca2RuO4 and Ca3Ru2O7, as well as of the heavy-fermion system CeCu5.8Au0.2 in vicinity and above the Néel-temperatures TN. We extract static and dynamical critical exponents to determine the spin dimensionalities and relevant anisotropies. We find that the critical behaviors of the single-layer compound Ca2RuO4 follow universal scaling laws that are compatible with predictions of the 2D-XY model. The bilayer compound Ca3Ru2O7 is only partly consistent with the 2D-XY theory and best described by the 3D-Ising model, which is likely a consequence of the intra-bilayer exchange interactions in combination with an orthorhombic single-ion anisotropy. For CeCu5.8Au0.2 we find signatures of a quantum-to-classical crossover in the dynamic scaling behavior.