Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 9 of 9
  • Thumbnail Image
    ItemOpen Access
    Tailored nanocomposites for 3D printed micro-optics
    (2020) Weber, Ksenia; Werdehausen, Daniel; König, Peter; Thiele, Simon; Schmid, Michael; Decker, Manuel; Oliveira, Peter William de; Herkommer, Alois; Giessen, Harald
  • Thumbnail Image
    ItemOpen Access
    Improvement in systematic error in background-oriented schlieren results by using dynamic backgrounds
    (2021) Reichenzer, Frieder; Schneider, Mike; Herkommer, Alois
    The use of electronic visual displays for background-oriented schlieren allows for the quick change of the reference images. In this study, we show that the quality of synthetic and background-oriented schlieren images can be improved by acquiring a set of images with different reference images and generating a median displacement field from it. To explore potential benefits, we studied different background changing strategies and their effect on the quality of the evaluation of the displacement field via artificial and experimental image distortions.
  • Thumbnail Image
    ItemOpen Access
    3D direct laser writing of highly absorptive photoresist for miniature optical apertures
    (2022) Schmid, Michael D.; Toulouse, Andrea; Thiele, Simon; Mangold, Simon; Herkommer, Alois; Giessen, Harald
    The importance of 3D direct laser writing as an enabling technology increased rapidly in recent years. Complex micro-optics and optical devices with various functionalities are now feasible. Different possibilities to increase the optical performance are demonstrated, for example, multi-lens objectives, a combination of different photoresists, or diffractive optical elements. It is still challenging to create fitting apertures for these micro optics. In this work, a novel and simple way to create 3D-printed opaque structures with a highly absorptive photoresist is introduced, which can be used to fabricate microscopic apertures increasing the contrast of 3D-printed micro optics and enabling new optical designs. Both hybrid printing by combining clear and opaque resists, as well as printing transparent optical elements and their surrounding opaque apertures solely from a single black resist by using different printing thicknesses are demonstrated.
  • Thumbnail Image
    ItemOpen Access
    Numerical analysis of micro-optics based single photon sources via a combined physical optics and rigorous simulations approach
    (2023) Jimenez, Carlos; Hellmann, Christian; Toulouse, Andrea; Drozella, Johannes; Wyrowski, Frank; Herkommer, Alois
  • Thumbnail Image
    ItemOpen Access
    Data-driven development of sparse multi-spectral sensors for urological tissue differentiation
    (2023) Fischer, Felix; Frenner, Karsten; Granai, Massimo; Fend, Falko; Herkommer, Alois
  • Thumbnail Image
    ItemOpen Access
    Design and realization of a miniaturized high resolution computed tomography imaging spectrometer
    (2023) Amann, Simon; Haist, Tobias; Gatto, Alexander; Kamm, Markus; Herkommer, Alois
  • Thumbnail Image
    ItemOpen Access
    Data-driven identification of biomarkers for in situ monitoring of drug treatment in bladder cancer organoids
    (2022) Becker, Lucas; Fischer, Felix; Fleck, Julia L.; Harland, Niklas; Herkommer, Alois; Stenzl, Arnulf; Aicher, Wilhelm K.; Schenke-Layland, Katja; Marzi, Julia
    Three-dimensional (3D) organoid culture recapitulating patient-specific histopathological and molecular diversity offers great promise for precision medicine in cancer. In this study, we established label-free imaging procedures, including Raman microspectroscopy (RMS) and fluorescence lifetime imaging microscopy (FLIM), for in situ cellular analysis and metabolic monitoring of drug treatment efficacy. Primary tumor and urine specimens were utilized to generate bladder cancer organoids, which were further treated with various concentrations of pharmaceutical agents relevant for the treatment of bladder cancer (i.e., cisplatin, venetoclax). Direct cellular response upon drug treatment was monitored by RMS. Raman spectra of treated and untreated bladder cancer organoids were compared using multivariate data analysis to monitor the impact of drugs on subcellular structures such as nuclei and mitochondria based on shifts and intensity changes of specific molecular vibrations. The effects of different drugs on cell metabolism were assessed by the local autofluorophore environment of NADH and FAD, determined by multiexponential fitting of lifetime decays. Data-driven neural network and data validation analyses (k-means clustering) were performed to retrieve additional and non-biased biomarkers for the classification of drug-specific responsiveness. Together, FLIM and RMS allowed for non-invasive and molecular-sensitive monitoring of tumor-drug interactions, providing the potential to determine and optimize patient-specific treatment efficacy.
  • Thumbnail Image
    ItemOpen Access
    Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use
    (2020) Li, Jiawen; Thiele, Simon; Quirk, Bryden C.; Kirk, Rodney W.; Verjans, Johan W.; Akers, Emma; Bursill, Christina A.; Nicholls, Stephen J.; Herkommer, Alois; Giessen, Harald; McLaughlin, Robert A.
  • Thumbnail Image
    ItemOpen Access
    3D printed micro-optics for quantum technology: Optimised coupling of single quantum dot emission into a single-mode fibre
    (2021) Sartison, Marc; Weber, Ksenia; Thiele, Simon; Bremer, Lucas; Fischbach, Sarah; Herzog, Thomas; Kolatschek, Sascha; Jetter, Michael; Reitzenstein, Stephan; Herkommer, Alois; Michler, Peter; Portalupi, Simone Luca; Giessen, Harald