Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    ItemOpen Access
    Contributions to the integral representation theory of groups
    (2004) Hertweck, Martin; Kimmerle, Wolfgang (apl. Prof. Dr.)
    This thesis contributes to the integral representation theory of groups. Topics treated include: the integral isomorphism problem --- if the group rings ZG and ZH are isomorphic, are the finite groups G and H isomorphic?, the Zassenhaus conjecture concerning automorphisms of integral group rings --- can each augmentation preserving automorphism of ZG be written as the product of an automorphism of G and a central automorphism?, and the normalizer problem --- in the unit group of ZG, is G only normalized by the obvious units? It is well known that these topics are closely related. Though counterexamples are known to each of these questions, our knowledge about such problems is still rather incomplete. A semilocal analysis of the known counterexample to the integral isomorphism problem is performed, which leads to new insight into the structure of the underlying groups. At the same time, this gives strong evidence for the existence of non-isomorphic groups of odd order having isomorphic semilocal group rings. It is shown how in the "semilocal case", counterexamples to the Zassenhaus conjecture can be produced with relatively minor effort. More importantly, it is shown for the first time that there is no local-global principle for automorphisms: An automorphism of a semilocal group ring (corresponding to an invertible bimodule M) need not give rise to a global automorphism (none of the modules in the genus of M is free from one side). In another part of this thesis, the normalizer problem for infinite groups is discussed. Research begun by Mazur is continued, and extensions of results of Jespers, Juriaans, de Miranda und Rogerio are obtained: By reduction to the finite group case, the normalizer problem is answered in the affirmative for certain classes of groups. The hypercenter of the unit group of RG, where G is a periodic group and R a G-adapted ring, is investigated too. If the hypercenter is not equal to the center, then G is a so called Q*-group, and then the hypercenter is described explicitly. The description in the R=Z case was obtained independently by Li and Parmenter, using different methods. The approach given here emphazises the connection to the normalizer problem and has a group-theoretical flavor. Moreover, it is shown that the second center of the unit group of ZG coincides with the finite conjugacy center. By way of contrast, the thesis ends with a little observation, intended to raise hopes that significant applications of integral representation theory to finite group theory will be found some day. In search of a proof of Glauberman's Z_p-star-Theorem (for odd p) which is independent from the classification, the following detail is noticed: If x is an element of order 3 in a finite group G which does not commute with any of its distinct conjugates, then chi(x), for any irreducible character chi of G, is an integral muliple of a root of unity.
  • Thumbnail Image
    ItemOpen Access
    On the elementary theory of Heller triangulated categories
    (2013) Künzer, Matthias; König, Steffen (Prof. Dr.)
    Verdier's formalism of triangulated categories works with triangles, which fit into octahedra. These triangles enjoy a morphism prolongation property, but those octahedra do not. We establish a formalism of n-triangles such that the 2-triangles coincide with Verdier's triangles, such that the 3-triangles are particular Verdier octahedra, and such that n-triangles appear for all n. Now morphism prolongation holds for all n. Following Heller, we let the n-triangles be governed by an isotransformation between two shift functors on the stable category of n-pretriangles.
  • Thumbnail Image
    ItemOpen Access
    Applications of Cartan and tractor calculus to conformal and CR-geometry
    (2007) Leitner, Felipe; Kühnel, Wolfgang (Prof.)
    The main object of this Habilitationsschrift is the geometric study of solutions of overdetermined conformally invariant differential equations via the use of Cartan and tractor calculus. This study fits into the broader research field of conformal and parabolic invariant theory. Parts of our investigations take special attention to conformal Lorentzian and spin geometry, which provides a link to the theories of modern physics. The present text originated from a collection of research articles and other works of the author, which emerged since the year 2003. In order to make the text basically self contained with uniform notations and conventions I decided to prefix an extended introductory chapter. An English and German summary are included as well.