Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 10 of 14
  • Thumbnail Image
    ItemOpen Access
    Determination of the thermally induced focal shift of processing optics for ultrafast lasers with average powers of up to 525 W
    (2018) Faas, Sebastian; Förster, Daniel J.; Weber, Rudolf; Graf, Thomas
    The continuous increase of the average laser power of ultrafast lasers is a challenge with respect to the thermal load of the processing optics. The power which is absorbed in an optical element leads to a temperature increase, temperature gradients, changing refractive index and shape, and finally causes distortions of the transmitted beam. In a first-order approximation this results in a change of the focal position, which may lead to an uncontrolled change of the laser machining process. The present study reports on investigations on the focal shift induced in thin plano-convex lenses by a high-power ultra-short pulsed laser with an average laser power of up to 525 W. The focal shift was determined for lenses made of different materials (N-BK7, fused silica) and with different coatings (un-coated, broadband coating, specific wavelength coating).
  • Thumbnail Image
    ItemOpen Access
    Estimation of the depth limit for percussion drilling with picosecond laser pulses
    (2018) Förster, Daniel J.; Weber, Rudolf; Holder, Daniel; Graf, Thomas
  • Thumbnail Image
    ItemOpen Access
    Process limits for percussion drilling of stainless steel with ultrashort laser pulses at high average powers
    (2022) Brinkmeier, David; Holder, Daniel; Loescher, André; Röcker, Christoph; Förster, Daniel J.; Onuseit, Volkher; Weber, Rudolf; Abdou Ahmed, Marwan; Graf, Thomas
    The availability of commercial ultrafast lasers reaching into the kW power level offers promising potential for high-volume manufacturing applications. Exploiting the available average power is challenging due to process limits imposed by particle shielding, ambient atmosphere breakdown, and heat accumulation effects. We experimentally confirm the validity of a simple thermal model, which can be used for the estimation of a critical heat accumulation threshold for percussion drilling of AISI 304 steel. The limits are summarized in a processing map, which provides selection criteria for process parameters and suitable lasers. The results emphasize the need for process parallelization.
  • Thumbnail Image
    ItemOpen Access
    Heat accumulation during pulsed laser materials processing
    (2014) Weber, Rudolf; Graf, Thomas; Berger, Peter; Onuseit, Volkher; Wiedenmann, Margit; Freitag, Chistian; Feuer, Anne
    Laser materials processing with ultra-short pulses allows very precise and high quality results with a minimum extent of the thermally affected zone. However, with increasing average laser power and repetition rates the so-called heat accumulation effect becomes a considerable issue.
  • Thumbnail Image
    ItemOpen Access
  • Thumbnail Image
    ItemOpen Access
    Analytical model for the depth progress of percussion drilling with ultrashort laser pulses
    (2021) Holder, Daniel; Weber, Rudolf; Graf, Thomas; Onuseit, Volkher; Brinkmeier, David; Förster, Daniel J.; Feuer, Anne
    A simplified analytical model is presented that predicts the depth progress during and the final hole depth obtained by laser percussion drilling in metals with ultrashort laser pulses. The model is based on the assumption that drilled microholes exhibit a conical shape and that the absorbed fluence linearly increases with the depth of the hole. The depth progress is calculated recursively based on the depth changes induced by the successive pulses. The experimental validation confirms the model and its assumptions for percussion drilling in stainless steel with picosecond pulses and different pulse energies.
  • Thumbnail Image
    ItemOpen Access
    High-quality percussion drilling with ultrashort laser pulses
    (2021) Feuer, Anne; Weber, Rudolf; Feuer, R.; Brinkmeier, David; Graf, Thomas
    The influence of the laser fluence on the quality of percussion-drilled holes was investigated both experimentally and by an analytical model. The study reveals that the edge quality of the drilled microholes depends on the laser fluence reaching the rear exit of the hole and changes with the number of pulses applied after breakthrough. The minimum fluence that must reach the hole’s exit in order to obtain high-quality microholes in stainless steel was experimentally found to be 2.8 times the ablation threshold.
  • Thumbnail Image
    ItemOpen Access
    Dry metal forming using volatile lubricants injected into the forming tool through flow-optimized, laser-drilled microholes
    (2020) Henn, Manuel; Reichardt, Gerd; Weber, Rudolf; Graf, Thomas; Liewald, Mathias
    A novel tribologic system was developed in which volatile lubricants (carbon dioxide-CO2 or nitrogen-N2) were used as a substitute for mineral oil-based lubricants in deep drawing processes. This process allows an intermediate medium to be introduced into the tool contact surfaces under high pressure by flow-optimized, laser-drilled microholes. This eliminates the need for subsequent cost-intensive cleaning processes as volatile lubricants evaporate while expanding to ambient pressure without leaving any residue. This article gives an overview of the current findings to enable and characterize the novel tribologic system. The areas of microhole laser drilling by ultrashort pulsed laser radiation, characterization of the novel tribologic system and realization of the system using a prototype tool will be described.
  • Thumbnail Image
    ItemOpen Access
    Self-shielding of X-ray emission from ultrafast laser processing due to geometrical changes of the interaction zone
    (2024) Holland, Julian; Hagenlocher, Christian; Weber, Rudolf; Graf, Thomas
    Materials processing with ultrashort laser pulses is one of the most important approaches when it comes to machining with very high accuracy. High pulse repetition rates and high average laser power can be used to attain high productivity. By tightly focusing the laser beam, the irradiances on the workpiece can exceed 1013 W/cm2, and thus cause usually unwanted X-ray emission. Pulsed laser processing of micro holes exhibits two typical features: a gradual increase in the irradiated surface within the hole and, with this, a decrease in the local irradiance. This and the shielding by the surrounding material diminishes the amount of ionizing radiation emitted from the process; therefore, both effects lead to a reduction in the potential X-ray exposure of an operator or any nearby person. The present study was performed to quantify this self-shielding of the X-ray emission from laser-drilled micro holes. Percussion drilling in standard air atmosphere was investigated using a laser with a wavelength of 800 nm a pulse duration of 1 ps, a repetition rate of 1 kHz, and with irradiances of up to 1.1·1014 W/cm. The X-ray emission was measured by means of a spectrometer. In addition to the experimental results, we present a model to predict the expected X-ray emission at different angles to the surface. These calculations are based on raytracing simulations to obtain the local irradiance, from which the local X-ray emission inside the holes can be calculated. It was found that the X-ray exposure measured in the surroundings strongly depends on the geometry of the hole and the measuring direction, as predicted by the theoretical model.
  • Thumbnail Image
    ItemOpen Access
    Analytical model for the depth progress during laser micromachining of V-shaped grooves
    (2022) Holder, Daniel; Weber, Rudolf; Graf, Thomas
    An analytical model is presented that allows predicting the progress and the final depth obtained by laser micromachining of grooves in metals with ultrashort laser pulses. The model assumes that micromachined grooves feature a V-shaped geometry and that the fluence absorbed along the walls is distributed with a linear increase from the edge to the tip of the groove. The depth progress of the processed groove is recursively calculated based on the depth increments induced by successive scans of the laser beam along the groove. The experimental validation confirms the model and its assumptions for micromachining of grooves in a Ti-alloy with femtosecond pulses and different pulse energies, repetition rates, scanning speeds and number of scans.