Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-10838
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.advisorSteeb, Holger (Prof. Dr.-Ing.)-
dc.contributor.authorBöger, Lukas-
dc.date.accessioned2020-05-04T07:57:02Z-
dc.date.available2020-05-04T07:57:02Z-
dc.date.issued2020de
dc.identifier.isbn978-3-937399-51-5-
dc.identifier.other1697027695-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-108550de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/10855-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-10838-
dc.description.abstractLiquid diffusion in solids plays a major role in countless biomedical, geotechnical and everyday applications. Modern continuum mechanics delivers suitable modeling approaches for both macroscopically observable material behavior and microstructural arrangements: multi-field formulations allow for different length scales and coupled physical effects. This work contributes to the theory and finite element discretization of diffusion phenomena in solids. Foundations of large strain kinematics, Newtonian balances and constitutive theory are outlined in conjunction with solute transport and essential non-equilibrium thermodynamics. This forms the basis for three applications. First, spinodal decomposition in rigid bodies is formulated in terms of an incremental variational formulation allowing for an efficient exploitation of its saddle-point structure. Then, a new minimization formulation for Fickian diffusion in hydrogels is shown to be the counterpart of the classical saddle-point principle and implemented with non-standard FE schemes. This model is extended by a phase-field approach to fracture to account for diffusion-induced material failure.en
dc.language.isoende
dc.publisherStuttgart : Institute of Applied Mechanicsde
dc.relation.ispartofseriesPublication series of the Institute of Applied Mechanics (IAM);3-
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc620de
dc.titleSaddle-point and minimization principles for diffusion in solids : phase separation, swelling and fractureen
dc.typedoctoralThesisde
ubs.dateAccepted2019-02-22-
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.institutInstitut für Mechanik (Bauwesen)de
ubs.publikation.seitenVIII, 165de
ubs.publikation.typDissertationde
ubs.schriftenreihe.namePublication series of the Institute of Applied Mechanics (IAM)de
ubs.thesis.grantorBau- und Umweltingenieurwissenschaftende
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
dissertation-lboeger.pdf21,17 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.