Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-11765
Autor(en): Bagbaba, Ayse
Wang, Xuan
Titel: Improving the MPI-IO performance of applications with genetic algorithm based auto-tuning
Erscheinungsdatum: 2021
Dokumentart: Konferenzbeitrag
Konferenz: IEEE International Parallel and Distributed Processing Symposium (35th, 2021, Online)
Erschienen in: 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) : IPDPSW 2021. Piscataway, NJ : IEEE, 2021. - ISBN 978-1-6654-3577-2, S. 798-805
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-117829
http://elib.uni-stuttgart.de/handle/11682/11782
http://dx.doi.org/10.18419/opus-11765
ISBN: 978-1-6654-3577-2
Bemerkungen: © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Zusammenfassung: Parallel I/O is an essential part of scientific applications running on high-performance computing systems. Under- standing an application’s parallel I/O behavior and identifying sources of performance bottlenecks require a multi-layer view of the I/O. Typical parallel I/O stack layers offer many tunable parameters that can achieve the best possible I/O performance. However, scientific users do often not have the time nor the experience for investigating the proper combination of these parameters for each application use-case. Auto-tuning can help users by automatically tuning I/O parameters at various layers transparently. In auto-tuning, using naive strategy, running an application by trying all possible combinations of tunable parameters for all layers of the I/O stack to find the best settings is an exhaustive search through the huge parameter space. This strategy is infeasible because of the long execution times of trial runs. In this paper, we propose a genetic algorithm-based parallel I/O auto-tuning approach that can hide the complexity of the I/O stack from users and auto-tune a set of parameter values for an application on a given system to improve the I/O performance. In particular, our approach tests a set of parameters and then, modifies the combination of these parameters for further testing based on the I/O performance. We have validated our model using two I/O benchmarks, namely IOR and MPI-Tile-IO. We achieved an increase in I/O bandwidth of up to 7.74×over the default parameters for IOR and 5.59× over the default parameters for MPI-Tile-IO.
Enthalten in den Sammlungen:13 Zentrale Universitätseinrichtungen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Bagbaba_iWAPT2021.pdfMPIIO auto-tuning; Bagaba iWAPT 2021279,56 kBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.