Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-12301
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorGrabowski, Blazej-
dc.contributor.authorZotov, Nikolay-
dc.date.accessioned2022-08-24T06:35:35Z-
dc.date.available2022-08-24T06:35:35Z-
dc.date.issued2021de
dc.identifier.issn0927-0256-
dc.identifier.other1815200278-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-123182de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12318-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12301-
dc.description.abstractPlastic deformation in metals is controlled by dislocation density and mobility. In bcc metals the mobility of screw dislocations, which takes place by temperature- and stress-driven nucleation of critical kink-pairs, is most essential for deformation. However, the critical resolved shear stresses at low temperatures, as determined from molecular dynamics (MD) simulations performed at constant strain rate, are typically 2–3 times larger than the yield stresses measured experimentally. Here, an accelerated MD procedure is developed and employed to investigate the onset of dislocation mobility in the prototypical system bcc Nb. The method combines constant strain and temperature MD with hyperdynamics, using a bond-boost potential. We demonstrate, with a careful statistical analysis, that the method enables nucleation of critical kink-pairs and the determination of the Gibbs energy of kink-pair formation from accelerated MD simulations at experimentally-measured shear stresses.en
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/865855de
dc.relation.uridoi:10.1016/j.commatsci.2021.110804de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc530de
dc.titleThermally-activated dislocation mobility in bcc metals : an accelerated molecular dynamics studyen
dc.typearticlede
ubs.fakultaetChemiede
ubs.institutInstitut für Materialwissenschaftde
ubs.publikation.seiten10de
ubs.publikation.sourceComputational materials science 200 (2021), article 110804de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:03 Fakultät Chemie

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
1-s2.0-S0927025621005310-main.pdf1,35 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.