Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-12305
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorAbbas, Mohammadi-
dc.contributor.authorIkeda, Yuji-
dc.contributor.authorEdalati, Parisa-
dc.contributor.authorMito, Masaki-
dc.contributor.authorGrabowski, Blazej-
dc.contributor.authorEdalati, Kaveh-
dc.date.accessioned2022-08-24T06:44:37Z-
dc.date.available2022-08-24T06:44:37Z-
dc.date.issued2022de
dc.identifier.issn1359-6454-
dc.identifier.other1815197919-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-123225de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12322-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12305-
dc.description.abstractDespite high interest in compact and safe storage of hydrogen in the solid-state hydride form, the de- sign of alloys that can reversibly and quickly store hydrogen at room temperature under pressures close to atmospheric pressure is a long-lasting challenge. In this study, first-principles calculations are combined with experiments to develop high-entropy alloys (HEAs) for room-temperature hydrogen storage. TixZr2-xCrMnFeNi (x = 0.4-1.6) alloys with the Laves phase structure and low hydrogen binding energies of -0.1 to -0.15 eV are designed and synthesized. The HEAs reversibly store hydrogen in the form of Laves phase hydrides at room temperature, while (de)hydrogenation pressure systematically reduces with increasing the zirconium fraction in good agreement with the binding energy calculations. The kinetics of hydrogenation are fast, the hydrogenation occurs without any activation or catalytic treatment, the hydrogen storage performance remains stable for at least 1000 cycles, and the storage capacity is higher than that for commercial LaNi5. The current findings demonstrate that a combination of theoretical calculations and experiments is a promising pathway to design new high-entropy hydrides with high performance for hydrogen storage.en
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/865855de
dc.relation.uridoi:10.1016/j.actamat.2022.118117de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc530de
dc.titleHigh-entropy hydrides for fast and reversible hydrogen storage at room temperature : binding-energy engineering via first-principles calculations and experimentsen
dc.typearticlede
ubs.fakultaetChemiede
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Materialwissenschaftde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten22de
ubs.publikation.sourceActa materialia 236 (2022), 118117de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:03 Fakultät Chemie

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
SUBMITTED_Abbas-Laves-Full.pdf4,96 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.