Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-12342
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorKuschel, Maike-
dc.contributor.authorTakors, Ralf-
dc.date.accessioned2022-08-25T15:31:23Z-
dc.date.available2022-08-25T15:31:23Z-
dc.date.issued2020-
dc.identifier.issn1097-0290-
dc.identifier.issn0006-3592-
dc.identifier.other1824127979-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-123614de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12361-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12342-
dc.description.abstractTransferring bioprocesses from lab to industrial scale without loss of performance is key for the successful implementation of novel production approaches. Because mixing and mass transfer is usually hampered in large scale, cells experience heterogeneities eventually causing deteriorated yields, that is, reduced titers, productivities, and sugar‐to‐product conversions. Accordingly, reliable and easy‐to‐implement tools for a priori prediction of large‐scale performance based on dry and wet‐lab tests are heavily needed. This study makes use of computational fluid dynamic simulations of a multiphase multi‐impeller stirred tank in pilot scale. So‐called lifelines, records of 120,000 Corynebacterium glutamicum cells experiencing fluctuating environmental conditions, were identified and used to properly design wet‐lab scale‐down (SD) devices. Physical parameters such as power input, gas hold up, kLa, and mixing time showed good agreement with experimental measurements. Analyzing the late fed‐batch cultivation revealed that the complex double gradient of glucose and oxygen can be translated into a wet‐lab SD setup with only few compartments. Most remarkably, the comparison of different mesh sizes outlined that even the coarsest approach with a mesh density of 1.12×105#/m3 was sufficient to properly predict physical and biological readouts. Accordingly, the approach offers the potential for the thorough analysis of realistic industrial case scenarios.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.language.isoende
dc.relation.uridoi:10.1002/bit.27457de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc570de
dc.subject.ddc620de
dc.titleSimulated oxygen and glucose gradients as a prerequisite for predicting industrial scale performance a priorien
dc.typearticlede
dc.date.updated2020-12-07T10:38:51Z-
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.institutInstitut für Bioverfahrenstechnikde
ubs.publikation.seiten2760-2770de
ubs.publikation.sourceBiotechnology and bioengineering 117 (2020), S. 2760-2770de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:04 Fakultät Energie-, Verfahrens- und Biotechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
BIT_BIT27457.pdf1,65 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons