Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-12581
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorPejak, Branislav-
dc.contributor.authorLugonja, Predrag-
dc.contributor.authorAntić, Aleksandar-
dc.contributor.authorPanić, Marko-
dc.contributor.authorPandžić, Miloš-
dc.contributor.authorAlexakis, Emmanouil-
dc.contributor.authorMavrepis, Philip-
dc.contributor.authorZhou, Naweiluo-
dc.contributor.authorMarko, Oskar-
dc.contributor.authorCrnojević, Vladimir-
dc.date.accessioned2022-12-19T09:12:09Z-
dc.date.available2022-12-19T09:12:09Z-
dc.date.issued2022-
dc.identifier.issn2072-4292-
dc.identifier.other1830313185-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-126005de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12600-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12581-
dc.description.abstractAgriculture is the backbone and the main sector of the industry for many countries in the world. Assessing crop yields is key to optimising on-field decisions and defining sustainable agricultural strategies. Remote sensing applications have greatly enhanced our ability to monitor and manage farming operation. The main objective of this research was to evaluate machine learning system for within-field soya yield prediction trained on Sentinel-2 multispectral images and soil parameters. Multispectral images used in the study came from ESA’s Sentinel-2 satellites. A total of 3 cloud-free Sentinel-2 multispectral images per year from specific periods of vegetation were used to obtain the time-series necessary for crop yield prediction. Yield monitor data were collected in three crop seasons (2018, 2019 and 2020) from a number of farms located in Upper Austria. The ground-truth database consisted of information about the location of the fields and crop yield monitor data on 411 ha of farmland. A novel method, namely the Polygon-Pixel Interpolation, for optimal fitting yield monitor data with satellite images is introduced. Several machine learning algorithms, such as Multiple Linear Regression, Support Vector Machine, eXtreme Gradient Boosting, Stochastic Gradient Descent and Random Forest, were compared for their performance in soya yield prediction. Among the tested machine learning algorithms, Stochastic Gradient Descent regression model performed better than the others, with a mean absolute error of 4.36 kg/pixel (0.436 t/ha) and a correlation coefficient of 0.83%.en
dc.description.sponsorshipEuropean Union’s Horizonde
dc.description.sponsorshipProvincial Secretariat for Higher Education and Scientific Research of Vojvodinade
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/825355de
dc.relation.uridoi:10.3390/rs14092256de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.subject.ddc710de
dc.titleSoya yield prediction on a within-field scale using machine learning models trained on Sentinel-2 and soil dataen
dc.typearticlede
dc.date.updated2022-06-21T15:55:11Z-
ubs.fakultaetZentrale Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutHöchstleistungsrechenzentrum Stuttgart (HLRS)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten22de
ubs.publikation.sourceRemote sensing 14 (2022), No. 2256de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:13 Zentrale Universitätseinrichtungen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
remotesensing-14-02256-v3.pdf29,6 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons