Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-12712
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.advisorRohde, Christian (Prof. Dr.)-
dc.contributor.authorBurbulla, Samuel-
dc.date.accessioned2023-02-10T11:43:13Z-
dc.date.available2023-02-10T11:43:13Z-
dc.date.issued2023de
dc.identifier.other1834147212-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-127310de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12731-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12712-
dc.description.abstractModeling flow in dynamically fracturing porous media is of high interest for a wide range of natural and technical applications, for instance, geothermal energy production or carbon capture and storage. In this work, we present new mixed-dimensional models for flow in porous media including fractures with time- and space-dependent geometries. The models are implemented using our new grid implementation Dune-MMesh which is tailored for the discretization of mixed-dimensional partial differential equations with fully conforming interface of codimension one. First, we propose a mixed-dimensional model for capillarity-free two-phase flow in dynamically fracturing porous media. The model is discretized by a fully conforming finite-volume moving-mesh algorithm that explicitly tracks the fracture geometry. Further, generalizing an earlier model for single-phase flow in fractured porous media, we derive a dimensionally reduced model including spatially varying apertures. In several numerical examples, using a mixed-dimensional discontinuous Galerkin discretization, the model demonstrates significant improvements for curvilinear fracture geometries. Finally, we propose a mixed-dimensional phase-field model for fracture propagation in poro-elastic media combining discrete fracture and phase-field modeling approaches. The corresponding discontinuous Galerkin discretization tracks the fracture geometry by adding facets to the fracture triangulation according to the phase-field indicator and is validated with results known from literature.en
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc510de
dc.titleMixed-dimensional modeling of flow in porous mediaen
dc.typedoctoralThesisde
ubs.dateAccepted2022-12-20-
ubs.fakultaetMathematik und Physikde
ubs.institutInstitut für Angewandte Analysis und numerische Simulationde
ubs.publikation.seiteniv, 160de
ubs.publikation.typDissertationde
ubs.thesis.grantorStuttgarter Zentrum für Simulationswissenschaften (SC SimTech)de
Enthalten in den Sammlungen:08 Fakultät Mathematik und Physik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Dissertation-final-fixed.pdf40,94 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.